• Title/Summary/Keyword: model factor

Search Result 11,932, Processing Time 0.036 seconds

Estimation model of shear strength of soil layer using linear regression analysis (선형회귀분석에 의한 토층의 전단강도 산정모델)

  • Lee, Moon-Se;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1065-1078
    • /
    • 2009
  • The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle ($\Phi$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.

  • PDF

A Study on Development of Strength Prediction Model for Construction Field by Maturity Method (적산온도 기법을 활용한 건설생산현장에서의 강도예측모델 개발에 관한 연구)

  • Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su;Choi, Se-Jin;Jang, Jong-Ho;Kang, Yong-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.177-182
    • /
    • 2002
  • The purpose of this study is to develope the strength prediction model by Maturity Method. A maturity function is a mathematical expression to account for the combined effects of time and temperature on the strength development of a cementious mixture. The method of equivalent ages is to use Arrhenius equation which indicates the influence of curing temperature on the initial hydration ratio of cement. For the experimental factors of this study, we selected the concrete mixing of W/C ratio 45, 50, 55 and 60% and curing temperature 5, 10, 20 and $30^{\circ}C$. And we compare and evaluate with logistic model that is existing strength prediction model, because we have to verify adaption possibility of new strength prediction model which is proposed by maturity method. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor.

Innovative Converged Service and It's Adoption, Use and Diffusion : A Holistic Approach to Diffusion of Innovations, Combining Adoption-Diffusion and Use Diffusion Paradigms (디지털융합서비스의 수용, 사용, 확산에 관한 연구 : 혁신확산에 관한 수용-확산 및 사용-확산의 통합적 접근)

  • Sawng, Yeong-Wha;Rim, Myung-Hwan;Kim, Seong-Ho;Motohashi, Kazuyuki
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.2
    • /
    • pp.187-205
    • /
    • 2010
  • This study takes a holistic approach to understand the diffusion of IPTV services by combining the adoption-diffusion model and the use-diffusion model of innovation. IPTV service, a leading digital converged application coupling media content with telecommunications, has been recently launched commercially in Korea. We created a structural model of adoption-diffusion, using the perceived easeof-use and usefulness of TAM(Technology Acceptance Model) as mediating variables, and a structural model of use-diffusion, with the rate of use and the variety of use as mediating variables. To empirically analyze these models, non-users of IPTV were surveyed using the adoption-diffusion model to identify factors influencing their intention to subscribe to the service. Meanwhile, users of IPTV were surveyed using the use-diffusion model to determine the factors that influence their satisfaction with the service and their intention to re-use it. Under the adoption-diffusion model, we found that trialability, household innovativeness and perceived risk were the determinants of user satisfaction with IPTV, and perceived ease-of-use, the mediating factors. Under the use-diffusion model, complementarity and communication were shown to be the determinants of users' satisfaction with IPTV, and variety of use, the mediating factor. We also found that consumers' intention to re-use IPTV was strongly influenced by its relative advantage and perceived risk.

  • PDF

Short-Term Forecasting of City Gas Daily Demand (도시가스 일일수요의 단기예측)

  • Park, Jinsoo;Kim, Yun Bae;Jung, Chul Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • Korea gas corporation (KOGAS) is responsible for the whole sale of natural gas in the domestic market. It is important to forecast the daily demand of city gas for supply and demand control, and delivery management. Since there is the autoregressive characteristic in the daily gas demand, we introduce a modified autoregressive model as the first step. The daily gas demand also has a close connection with the outdoor temperature. Accordingly, our second proposed model is a temperature-based model. Those two models, however, do not meet the requirement for forecasting performances. To produce acceptable forecasting performances, we develop a weighted average model which compounds the autoregressive model and the temperature model. To examine our proposed methods, the forecasting results are provided. We confirm that our method can forecast the daily city gas demand accurately with reasonable performances.

Simulation and Model Validation of a Parabolic Trough Solar Collector for Water Heating

  • Euh, Seung-Hee;Kim, Dae Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.17-26
    • /
    • 2013
  • The aim of this study is to analyze the performance of a parabolic trough solar collector (PTC) for water heating and to validate the model performance. The simulated model was compared, calibrated and verified with the experimental results. RMSE (Root mean square error) was used to calibrate the convective heat transfer coefficient between the absorber pipe and the ambient air which was the main factor affecting the heat transfer associated with the PTC. The calibrated model was better fitted with the experimental model. The maximum, minimum and mean deviation between the measured and predicted water temperatures differed only $0.81^{\circ}C$, $0.09^{\circ}C$ and $0.31^{\circ}C$ respectively in the calibrated model. RMSE values were decreased from 0.5389 to 0.4910, 0.0134 to 0.0125 and R-squared was increased from 0.9955 to 0.9956 after calibration. The temperature of water was increased from $33.7^{\circ}C$ to $48^{\circ}C$ in 12hour test. The thermal efficiency of the collector was calculated to be 55%. The calibrated model showed good agreement with the experimental data for model validation.

Modified K&C Model for Numerical Analysis of Steel-Fiber-Reinforced Concrete Structure (강섬유 보강 콘크리트 구조물의 해석을 위한 K&C모델의 보정)

  • Park, Gang-Kyu;Lee, Minjoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.85-91
    • /
    • 2021
  • This paper introduces a modified Karagozian & Case concrete model (K&C model) for the numerical analysis of a steel-fiber-reinforced concrete (SFRC) structure subjected to projectile impact. The original K&C model was calibrated to consider the effects of steel fibers accurately by modifying the strength surfaces and input parameters. Single element tests were then conducted and compared with uniaxial and triaxial compressive data to verify the modified model. With the application of a dynamic increase factor, the finite element model of the SFRC structure subjected to projectile impact was constructed. Thereafter, the applicability of the modified material model was examined by comparisons with the experimental results.

Optimal Bayesian MCMC based fire brigade non-suppression probability model considering uncertainty of parameters

  • Kim, Sunghyun;Lee, Sungsu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2941-2959
    • /
    • 2022
  • The fire brigade non-suppression probability model is a major factor that should be considered in evaluating fire-induced risk through fire probabilistic risk assessment (PRA), and also uncertainty is a critical consideration in support of risk-informed performance-based (RIPB) fire protection decision-making. This study developed an optimal integrated probabilistic fire brigade non-suppression model considering uncertainty of parameters based on the Bayesian Markov Chain Monte Carlo (MCMC) approach on electrical fire which is one of the most risk significant contributors. The result shows that the log-normal probability model with a location parameter (µ) of 2.063 and a scale parameter (σ) of 1.879 is best fitting to the actual fire experience data. It gives optimal model adequacy performance with Bayesian information criterion (BIC) of -1601.766, residual sum of squares (RSS) of 2.51E-04, and mean squared error (MSE) of 2.08E-06. This optimal log-normal model shows the better performance of the model adequacy than the exponential probability model suggested in the current fire PRA methodology, with a decrease of 17.3% in BIC, 85.3% in RSS, and 85.3% in MSE. The outcomes of this study are expected to contribute to the improvement and securement of fire PRA realism in the support of decision-making for RIPB fire protection programs.

A Strategy of Assessing Climate Factors' Influence for Agriculture Output

  • Kuan, Chin-Hung;Leu, Yungho;Lee, Chien-Pang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1414-1430
    • /
    • 2022
  • Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.

Analysis of Factors influencing Severity of Motorcycle Accidents using Ordered Probit Model (순서형 프로빗모형에 의한 이륜차 사고심각도의 영향요인 분석)

  • Choi, Jung Woo;Kum, Ki Jung
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.143-154
    • /
    • 2014
  • PURPOSES : This study drew factors affecting motorcycle accidents in Seoul by severity using an ordered probit model and aimed to analyze and verify the drawn influence factors. METHODS : As the severity of the accidents could be classified into three types (fatal injury, serious injury and minor injury), this study drew the factors affecting accidents by a comparative analysis employing an ordered probit model, removed the variables that would not secure significance sequentially to construct a model with high explanatory power regarding the factors affecting the severity of motorcycle accidents, and calculated the marginal effect of each factor to understand the degree of each factor's impact on the severity. First, Model 1 put in all variables; Model 2 was constructed by removing the variables of the road surface conditions that could not meet the level of significance (p=0.608); Model 3 was constructed by removing gender variable (p=0.423); and Model 4 was constructed finally by removing age variable (p=0.320). RESULTS : As a result of an analysis, statistically significant variables were time of occurrence, type of accident, road alignment and motorcycle displacement, and it turned out that the impacts on the severity were in the following order: a road alignment of left downhill, the type of motorcycle-to-vehicle accidents and a road alignment of a flatland on the left. The significance of the models was tested using the likelihood ratio, the level of significance and suitability statistics about them, and as a result of the test, the significance level and suitability of the constructed models were all excellent. In addition, the model accuracy indicating the accuracy of a predicted value compared to that of the value actually observed was 70.3% for minor injury; 70.1% for serious injury; and 68.6% for fatal injury, and the overall accuracy was 70.2%, which was very high. CONCLUSIONS : As a result of an analysis of motorcycle accidents in Seoul through the ordered probit model and the marginal effect, it turned out that their severity increased in nighttime accidents as compared to daytime ones and gradually increased in the order of motorcycle-to-vehicle accidents, motorcycle-to-person ones and the ones involving motorcycle only. As a result of an analysis, the severity of accidents in road alignments of left downhill, left flatland and straight downhill increased as compared to those in a road alignment of straight flatland and that the severity of accidents of motorcycles with a displacement larger than 50cc was higher than that of those with a displacement smaller than 50cc.

A Study on the Optimal Discriminant Model Predicting the likelihood of Insolvency for Technology Financing (기술금융을 위한 부실 가능성 예측 최적 판별모형에 대한 연구)

  • Sung, Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.2
    • /
    • pp.183-205
    • /
    • 2007
  • An investigation was undertaken of the optimal discriminant model for predicting the likelihood of insolvency in advance for medium-sized firms based on the technology evaluation. The explanatory variables included in the discriminant model were selected by both factor analysis and discriminant analysis using stepwise selection method. Five explanatory variables were selected in factor analysis in terms of explanatory ratio and communality. Six explanatory variables were selected in stepwise discriminant analysis. The effectiveness of linear discriminant model and logistic discriminant model were assessed by the criteria of the critical probability and correct classification rate. Result showed that both model had similar correct classification rate and the linear discriminant model was preferred to the logistic discriminant model in terms of criteria of the critical probability In case of the linear discriminant model with critical probability of 0.5, the total-group correct classification rate was 70.4% and correct classification rates of insolvent and solvent groups were 73.4% and 69.5% respectively. Correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify the present sample. However, the actual correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify a future observation. Unfortunately, the correct classification rate underestimates the actual correct classification rate because the data set used to estimate the discriminant function is also used to evaluate them. The cross-validation method were used to estimate the bias of the correct classification rate. According to the results the estimated bias were 2.9% and the predicted actual correct classification rate was 67.5%. And a threshold value is set to establish an in-doubt category. Results of linear discriminant model can be applied for the technology financing banks to evaluate the possibility of insolvency and give the ranking of the firms applied.

  • PDF