• Title/Summary/Keyword: model building

Search Result 6,108, Processing Time 0.031 seconds

Prediction and Evaluation of the Road Traffic Noise according to the Conditions of Road-side Building Using RLS-90 and CRTN Model (RLS-90 및 CRTN 모델에 의한 도로 인접건물에서의 도로소음 영향 예측 및 고찰)

  • Lee, Jang-Wook;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.425-432
    • /
    • 2009
  • Recently, reduction of road traffic noise in residential buildings has become one of the most important subjects. To reduce the road traffic noise, noise impact assessment by the road traffic prediction model is required before building construction. For reasonable road traffic noise prediction, it is required to analysis of various factors in road traffic prediction models. This paper was studied the road traffic noise propagation factors such as distance from road to building, receiver height, alignment angle of building and reflection coefficient of the building facade by two calculation models, RLS-90 and CRTN. The result showed that noise reduction was generally higher at bottom stories by ground absorption effect. The reflection coefficient of the building facade was affect of additional sound pressure level by facade reflecting. And alignment angle of building at $90^{\circ}$ was performed effective noise reduction better than $0^{\circ}$.

Numerical Simulation of Air Contaminant Dispersion around Urban City (도심지 빌딩주변 자동차 배가스 분산에 관한 연구)

  • Yu, Kyung-Seok;Ryu, Il-Kwang
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.2 s.60
    • /
    • pp.11-19
    • /
    • 2006
  • Ran numerical analysis about simplicity warm current model (simple turbulence model) to examine closely distributed laying stress on NOx of contaminant that happen in downtown that building is massed and result is as following. Downtown building is massed and transfer of vehicles can know that frequent area receives greatly effect of building. Pollution displays class kind phenomenon striking in the building, class kind done pollution that show high density being mixed with pollution that happen in vehicles being flowed in again side know can. Divide velocity vector of pollution and density change to ancient city and did numerical analysis. Because NOx is flowed in diversion of water neighborhood by continuous this kind in Godo 20m point, density showed density of $0.0907mg/m^3s$, and can know that Banryuhyeon that Pollution strikes in the building at ancient city 30m point is decreased and approaches with freedom flowing without cooperation (cavity) phenomenon remarkably. Because pollution strikes in the building at distance shaft 383m point, class kind do phenomenon that know appeared notedly Nopeungeonmulgwanat between building pollution density $0.067mg/m^3$ head of a families high appear.

BIM-enabled Quantitative Indicators for Analyzing Building Circulation in Early Phase of Design (설계초기 동선 분석을 위한 BIM기반 정량 평가지표 및 평가체계에 관한 연구)

  • Shin, Jaeyoung;Lee, Jin-Kook
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.4
    • /
    • pp.147-155
    • /
    • 2016
  • In order to ensure a certain level of the quality of design, standardized evaluation indicators are being used as an objective criterion. Even though the evaluation indicators are quantifiable, limitations such as inefficiency and inconsistency caused by manual task in the evaluation process still have been found. BIM (Building Information Modeling) technology that is commonly adopted in architectural design process provides an environment which enables us to figure out a building model to be interpreted quantitatively with the basis of the building information model. It supports quantitative, consistent, accurate and quick evaluations so as to improve quality of design even in the initial design phase. This paper aims to establish BIM-enabled quantitative indicators and an evaluation framework to analyze building circulation even in early phase of design. The indicators are composed of 4 types (relative distance, accessibility, simplicity, pedestrian friendliness) and 7 sub-types. The evaluation framework is the process to derive Parameterized Path Value (PPV) as weighting on each indicator. For demonstrating the scalability of the suggested evaluation indicators and the framework, the authors implemented an evaluation tool and a case study has been carried out by using an actual building remodel project.

A Study on the Rebuilding-Time in terms of the Apartment Housing - Focused on the Deterioration Analysis with the Maintenance Cost - (공동주택 재건축시기 산정연구(II) - 유지관리 비용을 이용한 열화도 분석을 중심으로 -)

  • Lee, Kang-Hee;Park, Guen-Soo;Chae, Chang-U
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.13-18
    • /
    • 2011
  • Building is different from the general commodities and needs to maintain the function and performance to get the living condition. Building deterioration occurs naturally with time elapse. Deterioration reasons are various. These are physical, functional, social and second physical aspect. Building would inevitably be deteriorated and need to repair various building part and materials. It gets to arrive at repair or rebuilding time until any management activity is meaningless. It is important to decide the rebuilding time in a management cost. In this paper, it aimed at analyzing the management annual cost and provide a rebuilding time of a apartment housing with a deterioration curve model. Results of this study are as follows : Most of the building has started to deteriorate in 40 years when the performance of building downgrades to 20%. After it past about 40 years, the deterioration rate is faster than the earlier 40 years. Fourth, the rebuilding time of an apartment housing is recommended about 45 years if the building service life has 60 years.

Institutional Strengthening and Capacity Building: A Case Study in Indonesia

  • POESPITOHADI, Wibisono;ZAUHAR, Soesilo;HARYONO, Bambang Santoso;AMIN, Fadillah
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.629-635
    • /
    • 2021
  • This study seeks to examine and analyze the influence of institutional strengthening factors, and capacity building - communication, resources, and training - on the performance of defense policy implementation. This study conducted a quantitative analysis related to the implementation of the institutional strengthening policy. The data used are primary data with a research instrument in the form of a questionnaire. The population in this study were all people in the city of Bandung, Indonesia. The sample of this study consisted of 200 respondents consisting of civilians and soldiers who served in the city of Bandung. Data analysis uses the Structural Equation Model (SEM) measurement model. The results of this study reveals that institutional strengthening (X1) influences positively and significantly capacity building's communication (Y1), resources (Y2), and training (Y3). On the other hand, the performance of defense policy implementation (Y4) is positively and significantly affected by capacity building's communication (Y1), resources (Y2), and training (Y3). The interaction between institutions, consumption support, role of the healthcare sector, and effectiveness are the most important indicators reflecting capacity building (communication, resources, training) and the performance of defense policy implementation. Essentially, this study analyzes the performance of defense policy implementation based on capacity building.

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.

A Study on the Validation of Heliodon for Daylighting Performance Evaluation (자연채광성능 평가를 위한 태양고정형 Heliodon의 유용성 검증에 관한 연구)

  • Kim, Jeong-Tai;Lee, Ji-Hyun;Kim, Gon
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Architects may evaluate building models to see how a building will shadow itself and its neighbors at various times. A heliodon, a tilt-table which is a machine that imitates the rotation and orbit of the Earth, helps architects wanting to analyze patterns of shadow patch, passive solar heating options, site solar panels, or control solar heat gain. The heliodon swivels in three directions for setting latitude, season, and time of day. Using the device, an architect first clamps a model to the tabletop, then turns the table to the coordinates of interest. Usually, the winter and summer solstices receive strong attention, for they represent extreme cases, A more recent installation at a university adds to its heliodon a set of lamps to recreate the illumination level and more accurate patterns of shadow patch. The table holds the building model at various angles to a spotlight, which mounts in the pole. The set of scale model measurement describes the validity of various electric lamps as an artificial sun to approximate the sun's parallel rays, helping designers to distinguish between illuminated areas in and around a building and those regions falling in the shadows.

Collaborative Process to Facilitate BIM-based Clash Detection Tasks for Enhancing Constructability

  • Seo, Jung-Ho;Lee, Baek-Rae;Kim, Ju-Hyung;Kim, Jae-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.299-314
    • /
    • 2012
  • One of reasons for introducing Building Information Modeling (BIM) is to support clash detection tasks by means of a 3D product model. In the conventional construction project process, clashes have been found during construction phase. However, it can cause cost overrun and time delay. In order to investigate and correct clash detections at design phase, relevant business process and guide for this task should be provided. This study aims to identify hindrances in clash detection tasks at the design phase and analyze its current process using IDEF0 model. Despite the convenience of IDEF0 as a systems analysis tool, professional participants might have difficulties to understand their own tasks according to business process. For this reason, in this research, Business Process Model and Notation (BPMN) is introduced to provide ideal process and required decision making governance. The provide BPMN model will provide insights for a BIM-based collaborative environment to enhance the constructability through the construction project.

Development of Time-Cost Models for Building Construction Projects in Bangladesh

  • Rahman, MD. Mizanur;Lee, Young Dai;Ha, Duy Khanh;Chun, Yong Hyun
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.3
    • /
    • pp.13-20
    • /
    • 2014
  • Estimating time and cost is an important mission in the early phase of a construction project, especially in feasibility study. It provides a foundation for making decision whether or not the project is performed on schedule and within budget. Thus, reliability of this estimate plays a key role in measuring the success of a project. This study was carried out to investigate the time-cost relationship in building construction projects in Bangladesh. The mathematical equation used in this study is based on Bromilow's equation. The research data were collected from sixty-three completed building projects through questionnaire survey. Type of clients, type of projects, and tender methods are the project characteristics considered in this study. The results of analysis indicated that the Bromilow's time-cost (BTC) models developed for each project characteristic are appropriate due to quite high coefficient of determination and relatively small mean percent errors. Among them, the forecasted model for time and cost according to tender methods is the best fit model. It is concluded that the BTC model could be applied in building construction project to predict its time and cost in Bangladesh. Four different regression models were also developed in this study. The results of BTC model between some selected countries were compared to gain the comprehensive view.