• Title/Summary/Keyword: model building

Search Result 6,108, Processing Time 0.036 seconds

Ontology-based Facility Maintenance Information Integration Model using IFC-based BIM data

  • Kim, Karam;Yu, Jungho
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.280-283
    • /
    • 2015
  • Many construction projects have used the building information modeling (BIM) extensively considering data interoperability throughout the projects' lifecycles. However, the current approach, which is to collect the data required to support facility maintenance system (FMS) has a significant shortcoming in that there are various individual pieces of information to represent the performance of the facility and the condition of each of the elements of the facility. Since a heterogeneous external database could be used to manage a construction project, all of the conditions related to the building cannot be included in an integrated BIM-based building model for data exchange. In this paper, we proposed an ontology-based facility maintenance information model to integrate multiple, related pieces of information on the construction project using industry foundation classesbased (IFC-based) BIM data. The proposed process will enable the engineers who are responsible for facility management to use a BIM-based model directly in the FMS-based work process without having to do additional data input. The proposed process can help ensure that the management of FMS information is more accurate and reliable.

  • PDF

Implications Deduction through Analysis of Reverse Engineering Process and Case Study for Prefabrication and Construction of Freeform Envelop Panels (비정형 건축물의 외장 패널의 선제작과 시공을 위한 역설계 프로세스와 사례 분석을 통한 시사점 도출)

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.579-585
    • /
    • 2016
  • 3D laser scanning can be used for scanning the freeform surface and building a model from which the measurements could be taken, in order to solve the difficulty with getting access to the exact freeform shape and position data of the complex building envelope. The shape making process using 3D scanning is as follows: point cloud, mesh surface segmentation, NURBS(Non-Uniform Rational B-spline) surface generation, and parametric solid model generation. In this research, we review previous studies, reverse engineering notion, importance of reverse engineering usage for freeform envelope, and previous cases in order to identify the detail reverse engineering process for prefabrication and construction of freeform panels using 3D laser scanning technology. Therefore, the purpose of this research is to present a basic information which should be considered during design and construction phase and improve quality and constructibility of freeform building by analyzing the reverse engineering process and case study for prefabrication and construction of freeform panels using 3D laser scanning. The research results will enable 3D shape engineering and design parameterization using reverse engineering to be used in various construction projects.

Visualization of Tunneling Using a BIM-based 3D Tunnel Model (BIM 기반 3D 터널 모델 가시화에 관한 연구)

  • Yoo, Wan-Kyu;Kim, Jinhwan;Zheng, Xiumei;Kim, Jeong-Heum;Gi, Sang-bok;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.395-401
    • /
    • 2015
  • An investigation of the tunnel face, as well as related measurement data collected during tunneling, is necessary for rock classification and to determine tunnel stability and the cost efficiency of tunneling. However, systematic management and efficient use of such data have yet to be successfully implemented domestically, and the number of experts in this field in Korea is limited. Thus, measures to develop and implement systematic management and effective use of data and expertise are urgently needed. This study aimed to develop measures to efficiently provide online tunnel design and construction data using a building information model (BIM)-based data visualization approach, based on an integrated 3D tunnel model generation module and a web viewer module. The development technology was verified through ○○ tunnel design and construction. Directions for future study and system improvement are proposed.

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building (3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구)

  • Choi, Sung-Pil;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.

BIM-Based Generation of Free-form Building Panelization Model (BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구)

  • Kim, Yang-Gil;Lee, Yun-Gu;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

Development of a Voluntary Hazard Assessment Model for Small- and Medium-Sized Ship-building Plants (중소규모 조선업 사업장을 위한 자율 위험성 평가 모델의 개발)

  • Lim, Hyeon-Kyo;Lee, Kyung-Tae;Bae, Dong-Chul;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.70-76
    • /
    • 2011
  • Industrial accident frequency in small- and medium-sized ship-building plants is much higher than that of large-sized ones so that safety management activities should be different. In that sense, voluntary hazard assessment would be helpful for small- and medium-sized plants. However, conventional hazard assessment items and methods had some problems that discouraged voluntary participation of plants concerned. This study aimed to develop a new model for small- and medium-sized ship-building plants that can promote and encourage voluntary hazard assessment activities. For that purpose, ship-building process was assumed as a sequence of phases, and accident characteristics were compared with them. From that result, relative weights of accident factors including ship-building phases, accident types, occupational category, accident-induced objects, and hazardous items were determined with accident frequency data and with the help of expert groups. Therefore, for web-based integrative computer programming, a plain but accident data-dependent model was developed, with an additive function for related agencies that want to collect assessment results. It is expected that this model would help small- and medium-sized ship-building plants that wanted not only simple checklists but also effective assessment and management guidelines.

A Study on Simulation for Decreasing Energy Demand According to Window-to-Wall Ratio and Installation Blind System in Building (블라인드 도입과 창면적비에 따른 표준건축물의 에너지 수요 저감에 대한 시뮬레이션 연구)

  • Kang, Suk-Min;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Building energy demands have highly risen in modern society; thus, It is necessary to reduce building energy demands especially commercial buildings adopting a curtain wall architecture. Curtain wall architectures have a high ratio of windows which is a vulnerable in heat insulations as cladding. In order to complement insulation performance of windows in these buildings, there are various methods adopted often such as installing blinds, wing wall and films. There are two suggestions of this paper. 1) WWR (Window-to-Wall Ratio) makes a impaction of energy demands in buildings. 2) Another one is an efficiency of blind systems which are installed in buildings in order to reduce cooling demands. It is also critical to make fundamental model for low-energy building construction by processing a lot of simulation As a result by this study, 1) an external blind system is more useful for reducing cooling energy demands rather than an internal blind system. 2) Buildings which have a large window require more amount of cooling demands. In case of WWR 45%, it needs more cooling energy rather than WWR 15% model's 3) Adopting blind system would reduce energy demands. WWR 45% model with external blind systems reduces about 4% of cooling energy demands compared to same model without any blind systems.4) it is necessary to study an efficiency of blind systems combined with renewable energy and it will be possible to reduce more energy demand in building significantly.

A Stochastic Simulation Model for Estimating Activity Duration of Super-tall Building Project

  • Minhyuk Jung;Hyun-soo Lea;Moonseo Park;Bogyeong Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.397-402
    • /
    • 2013
  • In super-tall building construction projects, schedule risk factors which vertically change and are not found in the low and middle-rise building construction influence duration of a project by vertical attribute; and it makes hard to estimate activity or overall duration of a construction project. However, the existing duration estimating methods, that are based on quantity and productivity assuming activities of the same work item have the same risk and duration regardless of operation space, are not able to consider the schedule risk factors which change by the altitude of operation space. Therefore, in order to advance accuracy of duration estimation of super-tall building projects, the degree of changes of these risk factors according to altitude should be analyzed and incorporated into a duration estimating method. This research proposes a simulation model using Monte Carlo method for estimating activity duration incorporating schedule risk factors by weather conditions in a super-tall building. The research process is as follows. Firstly, the schedule risk factors in super-tall building are identified through literature and expert reviews, and occurrence of non-working days at high altitude by weather condition is identified as one of the critical schedule risk factors. Secondly, a calculating method of the vertical distributions of the weather factors such as temperature and wind speed is analyzed through literature reviews. Then, a probability distribution of the weather factors is developed using the weather database of the past decade. Thirdly, a simulation model and algorithms for estimating non-working days and duration of each activity is developed using Monte-Carlo method. Finally, sensitivity analysis and a case study are carried out for the validation of the proposed model.

  • PDF

The Layout Design of Structured Building Block Integrated Circuit (조립된 Building Block IC의 설계디자인의 문제)

  • Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.1056-1067
    • /
    • 1987
  • This paper presents a design procedure for building block integrated circuits that is based on the digraph relaxation model. A set of optimization procedure is prosented for a minimum area and routing-fecsible placement of IC building blocks. Chip area optimization is subject to perimeter and area constraints on the component rectangles in the dissection.

  • PDF