• Title/Summary/Keyword: model based diagnose

Search Result 190, Processing Time 0.025 seconds

A Fault Diagnosis Method of Oil-Filled Power Transformers Using IEC Code based Neuro-Fuzzy Model (IEC 코드 기반의 뉴로-퍼지모델을 이용한 유입변압기 고장진단 기법)

  • Seo, Myeong-Seok;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • It has been proven that the dissolved gas analysis (DGA) is the most effective and convenient method to diagnose the transformers. The DGA is a simple, inexpensive, and non intrusive technique. Among the various diagnosis methods, IEC 60599 has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using IEC code based neuro-fuzzy model. The proposed method proceeds two steps. First, IEC 60599 method is applied to diagnosis. If IEC code can't determine the fault type, neuro-fuzzy model is applied to effectively classify the fault type. To demonstrate the validity of the proposed method, experiment is performed and its results are illustrated.

Multiple-Fault Diagnosis for Chemical Processes Based on Signed Digraph and Dynamic Partial Least Squares (부호유향그래프와 동적 부분최소자승법에 기반한 화학공정의 다중이상진단)

  • 이기백;신동일;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.159-167
    • /
    • 2003
  • This study suggests the hybrid fault diagnosis method of signed digraph (SDG) and partial least squares (PLS). SDG offers a simple and graphical representation for the causal relationships between process variables. The proposed method is based on SDG to utilize the advantage that the model building needs less information than other methods and can be performed automatically. PLS model is built on local cause-effect relationships of each variable in SDG. In addition to the current values of cause variables, the past values of cause and effect variables are inputted to PLS model to represent the Process armies. The measured value and predicted one by dynamic PLS are compared to diagnose the fault. The diagnosis example of CSTR shows the proposed method improves diagnosis resolution and facilitates diagnosis of masked multiple-fault.

A Study on the Lifetime Prediction of Lithium-Ion Batteries Based on the Long Short-Term Memory Model of Recurrent Neural Networks

  • Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.236-241
    • /
    • 2024
  • Due to the recent emphasis on carbon neutrality and environmental regulations, the global electric vehicle (EV) market is experiencing rapid growth. This surge has raised concerns about the recycling and disposal methods for EV batteries. Unlike traditional internal combustion engine vehicles, EVs require unique and safe methods for the recovery and disposal of their batteries. In this process, predicting the lifespan of the battery is essential. Impedance and State of Charge (SOC) analysis are commonly used methods for this purpose. However, predicting the lifespan of batteries with complex chemical characteristics through electrical measurements presents significant challenges. To enhance the accuracy and precision of existing measurement methods, this paper proposes using a Long Short-Term Memory (LSTM) model, a type of deep learning-based recurrent neural network, to diagnose battery performance. The goal is to achieve safe classification through this model. The designed structure was evaluated, yielding results with a Mean Absolute Error (MAE) of 0.8451, a Root Mean Square Error (RMSE) of 1.3448, and an accuracy of 0.984, demonstrating excellent performance.

Plasma Diagnosis by Using Scanning Electron Microscope and Neural Network (신경망과 주사전자현미경을 이용한 플라즈마 진단)

  • Bae, Jung-Gi;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.96-98
    • /
    • 2006
  • A new ex-situ model to diagnose a plasma processing equipment was presented. The model was constructed by combining wavelet, scanning electron microscope, ex-situ measurement of etching profile, and neural network. The diagnosis technique was applied to a tungsten etching process, conducted in a $SF_6$ helicon plasma. The wavelet was used to characterize detailed variations of plasma-etched surface. The diagnosis model was constructed with the vertical wavelet component. For comparison, a conventional model was built by using the estimated profile data. Compared to the conventional model, the wavelet-based model, demonstrated a much improved diagnosis.

  • PDF

Segmenting Layers of Retinal OCT Images using cGAN (cGAN을 이용한 OCT 이미지의 층 분할)

  • Kwon, Oh-Heum;Kwon, Ki-Ryong;Song, Ha-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1476-1485
    • /
    • 2020
  • Segmenting OCT retinal images into layers is important to diagnose and understand the progression of retinal diseases or identify potential symptoms. The task of manually identifying these layers is a difficult task that requires a lot of time and effort even for medical professionals, and therefore, various studies are being conducted to automate this using deep learning technologies. In this paper, we use cGAN-based neural network to automatically segmenting OCT retinal images into seven terrain-type regions defined by six layer boundaries. The network is composed of a Segnet-based generator model and a discriminator model. We also proposed a dynamic programming algorithm for refining the outputs of the network. We performed experiments using public OCT image data set and compared its performance with the Segnet-only version of the network. The experimental results show that the cGAN-based network outperforms Segnet-only version.

Application of Hidden Markov Model Using AR Coefficients to Machine Diagnosis (AR계수를 이용한 Hidden Markov Model의 기계상태진단 적용)

  • 이종민;황요하;김승종;송창섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.48-55
    • /
    • 2003
  • Hidden Markov Model(HMM) has a doubly embedded stochastic process with an underlying stochastic process that can be observed through another set of stochastic processes. This structure of HMM is useful for modeling vector sequence that doesn't look like a stochastic process but has a hidden stochastic process. So, HMM approach has become popular in various areas in last decade. The increasing popularity of HMM is based on two facts : rich mathematical structure and proven accuracy on critical application. In this paper, we applied continuous HMM (CHMM) approach with AR coefficient to detect and predict the chatter of lathe bite and to diagnose the wear of oil Journal bearing using rotor shaft displacement. Our examples show that CHMM approach is very efficient method for machine health monitoring and prediction.

A Study on Fault Detection of a Turboshaft Engine Using Neural Network Method

  • Kong, Chang-Duk;Ki, Ja-Young;Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.100-110
    • /
    • 2008
  • It is not easy to monitor and identify all engine faults and conditions using conventional fault detection approaches like the GPA (Gas Path Analysis) method due to the nature and complexity of the faults. This study therefore focuses on a model based diagnostic method using Neural Network algorithms proposed for fault detection on a turbo shaft engine (PW 206C) selected as the power plant for a tilt rotor type unmanned aerial vehicle (Smart UAV). The model based diagnosis should be performed by a precise performance model. However component maps for the performance model were not provided by the engine manufacturer. Therefore they were generated by a new component map generation method, namely hybrid method using system identification and genetic algorithms that identifies inversely component characteristics from limited performance deck data provided by the engine manufacturer. Performance simulations at different operating conditions were performed on the PW206C turbo shaft engine using SIMULINK. In order to train the proposed BPNN (Back Propagation Neural Network), performance data sets obtained from performance analysis results using various implanted component degradations were used. The trained NN system could reasonably detect the faulted components including the fault pattern and quantity of the study engine at various operating conditions.

Dissolved Gas Analysis Using the Dempster-Shafer Rule of Combination (Dempster-Shafer 결합 규칙을 이용한 유중 가스 분석법)

  • Yoon, Yong-Han;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.301-303
    • /
    • 1998
  • This paper presents a new approach to diagnose and detect faults in oil-filled power transformers based on various dissolved gas analyses. A theoretic fuzzy information model is introduced, An inference scheme which yields the 'most' consistent conclusion proposed. A framework is established that allows various dissolved gas analyses to be combined in a systematic way such as the Dempster-Shafer rule. Good diagnosis accuracy is obtained with the proposed approach.

  • PDF

An Ensemble Model for Machine Failure Prediction (앙상블 모델 기반의 기계 고장 예측 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • There have been a lot of studies in the past for the method of predicting the failure of a machine, and recently, a lot of researches and applications have been generated to diagnose the physical condition of the machine and the parts and to calculate the remaining life through various methods. Survival models are also used to predict plant failures based on past anomaly cycles. In particular, special machine that reflect the fluid flow and process characteristics of chemical plants are connected to hundreds or thousands of sensors, so there are not many factors that need to be considered, such as process and material data as well as application of derivative variables. In this paper, the data were preprocessed through time series anomaly detection based on unsupervised learning to predict the abnormalities of these special machine. Next, clustering results reflecting clustering-based data characteristics were applied to produce additional variables, and a learning data set was created based on the history of past facility abnormalities. Finally, the prediction methodology based on the supervised learning algorithm was applied, and the model update was confirmed to improve the accuracy of the prediction of facility failure. Through this, it is expected to improve the efficiency of facility operation by flexibly replacing the maintenance time and parts supply and demand by predicting abnormalities of machine and extracting key factors.

An SVM-based physical fatigue diagnostic model using speech features (음성 특징 파라미터를 이용한 SVM 기반 육체피로도 진단모델)

  • Kim, Tae Hun;Kwon, Chul Hong
    • Phonetics and Speech Sciences
    • /
    • v.8 no.2
    • /
    • pp.17-22
    • /
    • 2016
  • This paper devises a model to diagnose physical fatigue using speech features. This paper presents a machine learning method through an SVM algorithm using the various feature parameters. The parameters used include the significant speech parameters, questionnaire responses, and bio-signal parameters obtained before and after the experiment imposing the fatigue. The results showed that performance rates of 95%, 100%, and 90%, respectively, were observed from the proposed model using three types of the parameters relevant to the fatigue. These results suggest that the method proposed in this study can be used as the physical fatigue diagnostic model, and that fatigue can be easily diagnosed by speech technology.