• Title/Summary/Keyword: model based PID control

Search Result 277, Processing Time 0.024 seconds

Nonlinear Process Model Based Control of Drum-type Cogeneration Power Plant (비선형 PMBC에 의한 드럼형 열병합발전소 제어)

  • 조영춘;남해곤;이광식;윤성훈
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.364-371
    • /
    • 1995
  • 100MW급 유류 연소 드럼형 열병합발전소의 주증기온도와 드럼수위 제어를 위한 비선형 PMBC를 개발하고 그 성능을 PID 알고리즘과 비교하였다. "first principle" approach를 사용하여 개발된 프로세스 모델은 정상상태를 과도상태에서 그 정확도를 현장의 데이터와 비교 검증한 것으로 제어기 성능 평가와 설계에 적합한 정교한 것이다. PMBC와 PID 제어의 성능을 부하증가와 연료의 열량변화 등의 외란에 비교한 결과, PMBC가 PID에 비하여 속응성, 절대오차 적분차, 제어노력 등에서 월등하게 우수한 것을 확인하였다. 것을 확인하였다.

  • PDF

열병합발전소 주증기온도 제어를 위한 비선형 PMBC

  • 조영춘;남해곤;이광식;윤성훈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.163-172
    • /
    • 1995
  • 100 MW급 유류연소 드럼형 열병합발전소의 주증기온도 제어를 위한 비선형 process model based control (PMBC)을 개발하고 그 성능을 PID 알고리즘과 비교하였다. 비선형 PMBC에서는 프로세스의 메캐니즘을 비교적 충실히 반영하는 모델이 필요한데, 사용된 모델은 first principle approach를 사용하여 개발된 것으로 제어기 성능 평가와 설계에 적합한 정교한 것이다. 비선형 PMBC는 비선형 피드백, feedforward, decoupling을 제공하고 분산제어에 적합하면서 모델링 오차에 민감하지 않은 장점이 있다. PMBC와 PID 제어의 성능을 부하증가와 연료의 열량변화등의 외란에 비교한 결과, PMBC가 PID에 비하여 속응성, 절대오차 적분치, 제어노력등에서 월등하게 우수한 것을 확인하였다.

  • PDF

Control of Stick-Slip Friction with a CMAC (CMAC 제어기를 이용한 점착 미끄럼 마찰의 제어)

  • Park, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.45-51
    • /
    • 1995
  • This paper proposes a CMAC-based controller for servo systems with stick-slip friction. Performance of the controller was evaluated from computer simulations and compared with that of a conventional PID controller. Firction model used in the simulations is based upon the one proposed by Tustin. It was shown that the CMAC-based controller settles more quickly, and overshoots less than the PID. It was also shown that the CMAC is less sensitive to the changes of the plant parameters.

  • PDF

MPC based path-following control of a quadcopter drone considering flight path and external disturbances in MATLAB/Simulink (MATLAB/Simulink 기반 주행 경로와 외란을 고려한 쿼드콥터 드론의 모델 예측 제어 기반 경로 주행 제어)

  • Soon-Jae Gwon;Gu-Min Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.472-477
    • /
    • 2023
  • In this paper, we proposes the use of Model Predictive Control (MPC) techniques to enable quadcopter drones to effectively follow paths and maintain flight safety even under dynamic external environments and disturbances. Through simulations conducted in MATLAB/Simulink, the performance of two controllers, PID and MPC, is compared in flight scenarios with disturbances. The proposed design method shows that the MPC controller, when compared to the PID controller, exhibits a difference in the Mean Squared Error between the intended flight path and the actual path of the quadcopter drone. This difference is 0.2 in performance under no disturbance, and it increases to 0.8 under disturbance, demonstrating the improved path following accuracy of the MPC controller.

PID Control of a flexible robot rotating in vertical plane (수직면에서 회전운동을 하는 탄성로봇의 PID 제어)

  • Kang, Junwon;Oh, Chaeyoun;Kim, Kiho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.34-41
    • /
    • 1997
  • This paper presents a technique to control a very flexible robot moving in a vertical plane. The flexible robot is modeled as an Euler-Bernoulli beam. Elastic deformation is approximated using the assmed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID cnotrol tech- nique. The proportional, integral and deivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and no steady state error, and short settling time. The effectiveness of the developed control scheme is showed in the hub angular diaplacement control experiment. Three different end masses are uned in the experiment. The experimental results show that developed control algorithm is very effective showing little overshoot, no steady state error, and less than 2.5 second settl- ing time in case of having an end mass which is equivalent to 45% of the manipulator mass. Also the experimental results show that the residual vibration fo the end point is effectively controlled.

  • PDF

A Design Method of Model Following Digital PID Controller and Its Application to Speed Control of the Current Source Inverter-Fed Induction Motor (모델추종 디지탈 PID제어기의 설계와 유도전동기에의 적용)

  • 이동철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.29-36
    • /
    • 1998
  • In this paper, We are proposed a design method of the digital PID controller based on the model following method which minimized the error integral of the step response between the control system and the reference model. And we are applied it by a speed control of the current type inverter induction motor. The dynamic characteristic of the system was expressed by the step response, and then the optimal parameter of the PID controller can be easily obtained by the matrix computation. The derived algorithm can be implemented through a simple and systematic design procedure. Finally, We have shown the result with a computer simulation by the present method which proposed the speed control system and stable operation and fairly transient performance. And then tt was found results by experimental process.

  • PDF

Tracking Performance Improvement of a Magnetic Levitation Based Fine Manipulator (자기부상식 미동 매니퓰레이터의 추종성능 향상)

  • Choi, Kee-Bong;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.58-65
    • /
    • 1999
  • A magnetic levitation system requires a robustness to overcome a dynamic instability due to disturbances. In this paper a robust controller for a magnetically levitated fine manipulator is presented. The proposed controller consists of following two parts: a model reference controller and an $H_{\infty}$ controller. First, the model reference control stabilizes the motion of the manipulator. Then, the motion of the manipulator follows that of the reference model. Second, the $H_{\infty}$ control minimizes errors generated from the model reference control due to noise and disturbance since the $H_{\infty}$ control is a kind of robust control. The experiments of position control and tracking control are carried out by use of the proposed controller under the conditions of free disturbances and forced disturbances. Also, the experiments using PID controller are carried out under the same conditions. The results from above two controllers are compared to investigate the control performances. As the results, it is observed that the proposed controller has similar position accuracy but better tracking performances comparing to the PID controller as well as good disturbance rejection effect due to the robust characteristics of the controller. In conclusion. it is verified that the proposed controller has the simple control structure, the good tracking performances and good disturbance rejection effect due to the robust characteristics of the controller.

  • PDF

The development of an on-line self-tuning fuzzy PID controller (온라인 자기동조 퍼지 PID 제어기 개발)

  • 임형순;한진욱;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.704-707
    • /
    • 1997
  • In this paper, we present a fuzzy logic based tuner for continuous on-line tuning of PID controllers. The essential idea of the scheme is to parameterize a Ziegler-Nichols-like tuning formula by a singler parameter .alpha., then to use an on line fuzzy logic to self-tune the parameter. The adaptive scaling makes the controller robust against large variations in parametric and dynamics uncertainties in the plant model. New self-tuning controller has the ability to decide when to use PI or PID control by extracting process dynamics from relay experiments. These scheme lead to improved performance of the transient and steady state behavior of the closed loop system, including processes with nonminimum phase processes.

  • PDF

The application of model predictive control for multi-loop control structure (다중루프 제어구조에의 모델예측제어의 적용)

  • 문혜진;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1400-1403
    • /
    • 1996
  • In this study, we applied the model predictive control(MPC) to Multi-loop control structure. Since MPC has many advantage for MIMO process and constraints handling, it induces the better performance to apply MPC to multi-loop control. And we suggest the advanced method to reduce the calculation load using the wavelet transform. It shows the possibility to substitute the existing PID control based structure with MPC.

  • PDF

Water Level Intelligent Controller Design of Power Plant Drum (발전기 드럼의 수위 지능 제어기 설계)

  • Hong, Hyun-Mun;Lee, Bong-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.271-274
    • /
    • 2007
  • In this paper, we propose a intelligent controller design method for the water level control of the power plant drum in the form of nonminimum phase system. The proposed method is based on T. Takagi and M. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design method.

  • PDF