• Title/Summary/Keyword: model based PID control

Search Result 277, Processing Time 0.024 seconds

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

Innovative Model-Based PID Control Design for Bus Voltage Regulation with STATCOM in Multi-Machine Power Systems (STATCOM을 사용한 다기 전력 계통의 버스 전압 조절을 위한 모델 기반 PID 제어기 설계)

  • Kim, Seok-Kyoon;Lee, Young Il;Song, Hwachang;Kim, Jung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.299-305
    • /
    • 2013
  • The complexity and severe nonlinearity of multi-machine power systems make it difficult to design a control input for voltage regulation using modern control theory. This paper presents a model-based PID control scheme for the regulation of the bus voltage to a desired value. To this end, a fourth-order linear system is constructed using input and output data obtained using the TSAT (Transient Security Assessment Tool); the input is assumed to be applied to the grid through the STATCOM (STATic synchronous COMpensator) and the output from the grid is a bus voltage. On the basis of the model, it is identified as to which open-loop poles of the system make the response to a step input oscillatory. To reduce this oscillatory response effectively, a model-based PID control is designed in such a way that the oscillatory poles are no longer problematic in the closed loop. Simulation results show that the proposed PID control dampens the response effectively.

Development of auto-tuning PID controller for Temperature Control systems and Its Application to Rapid Thermal Processor (온도제어용 자동동조 PID 제어기 설계와 RTP에의 적용)

  • 임재식;이영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.62-62
    • /
    • 2000
  • An auto-tuning PID controller which is adequate for temperature control is developed based on relay-control and pole-placement Using the critical frequency which is obtained from relay-control parameters of assumed model are identified. Pole/zero-placement PID controller is designed for the identified model. The desired pole/zeros are determined so that the closed-loop has overshoot free step response. The developed auto-tuning PID controller was successfully applied to the temperature control of RTP.

  • PDF

Neural Network Based PID Control for Pneumatic NC Axes (공압 NC축의 신경회로망 결합형 PID 제어)

  • Park, Lae-Seo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.105-111
    • /
    • 2006
  • This paper describes a Neural Network based PID control scheme for pneumatic NC axes. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional PID controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. The gains of PID controller are determined using a self tuning scheme. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PID control.

Robust PID Controller Design for Speed Control of BLDC Motors (BLDC 모터 속도제어를 위한 견실 PID 제어기 설계)

  • 양승윤;김인수;전완수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • In this paper, the robust PID(Proportional-Integral-Derivative) controller was designed for speed control of BLDC motors using the frequency region model matching method. It was designed the robust PID controller satisfying disturbance attenuation and robust tracking performance using an H$\infty$ control method. The robust PID controller gains with the performances of the designed H$\infty$ controller are determined using the model matching method at frequency domain. Consequently, simulation results show that the proposed PID speed controller satisfies load torque disturbance attenuation and robust tracking performance, and this study has usefulness and applicability for the speed control system design of BLDC motors.

A frequency domain adaptive PID controller based on non-parametric plant model representation

  • Egashira, Toyokazu;Iwai, Zenta;Hino, Mitsushi;Takeyama, Yoshikazu;Ono, Taisuke
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.165-168
    • /
    • 1996
  • In this paper, we propose a design method of PID adaptive controller based on frequency domain analysis. The method is based on the estimation of a nonparametric process model in the frequency domain and the determination of the PID controller parameters by achieving partial model matching so as to minimize a performance function concerning to relative model error between the loop transfer function of the control system and the desired system. In the design method the process is represented only by a discrete set of points on the Nyquist curve of the process. Therefore it is not necessary to estimate a full order parameterized process model.

  • PDF

Level control of single water tank systems using Fuzzy-PID technique

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.550-556
    • /
    • 2014
  • In this study, for the control of a single water tank system, a fuzzy-PID controller design technique based on a fuzzy model is investigated. For this purpose, a water tank system is linearized as a number of submodels depending on the operating point, and a fuzzy model is obtained by fuzzy combining. Each submodel is approximated as a first order time delay model, and a PID controller is designed using several existing tuning techniques. Then, through the fuzzy combination of this controller using the same method as that of the fuzzy model, a fuzzy-PID controller is designed. For the proposed technique, a simulation is performed using the fuzzy model of a water tank system, and the validity is examined by comparing its performance with that of a PID controller.

Fuzzy Logic PID controller based on FPGA

  • Tipsuwanporn, V.;Runghimmawan, T.;Krongratana, V.;Suesut, T.;Jitnaknan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1066-1070
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. Thus, this paper proposes auto tune PID by fuzzy logic controller based on FPGA which to achieve real time and small size circuit board. The digital PID controller design to consist of analog to digital converter which use chip TDA8763AM/3 (10 bit high-speed low power ADC), digital to analog converter which use two chip DAC08 (8 bit digital to analog converters) and fuzzy logic tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. The fuzzy logic tune digital PID was designed by look up table (LUT) method which data storage into ROM refer from trial and error process. The digital PID processor verified behavior by the application program ModelSimXE. The result of simulation when input is units step and vary controller gain ($K_p$, $K_i$ and $K_d$) are similarity with theory of PID and maximum execution time is 150 ns/action at frequency are 30 MHz. The fuzzy logic tune digital PID controller based on FPGA was verified by control model of level control system which can control level into model are correctly and rapidly. Finally, this design use small size circuit board and very faster than computer and microcontroller.

  • PDF

An Intelligent PID Controller based on Dynamic Bayesian Networks for Traffic Control of TCP (TCP의 트래픽 제어를 위한 동적 베이시안 네트워크 기반 지능형 PID 제어기)

  • Cho, Hyun-Choel;Lee, Young-Jin;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.286-295
    • /
    • 2007
  • This paper presents an intelligent PID control for stochastic systems with nonstationary nature. We optimally determine parameters of a PID controller through learning algorithm and propose an online PID control to compensate system errors possibly occurred in realtime implementations. A dynamic Bayesian network (DBN) model for system errors is additionally explored for making decision about whether an online control is carried out or not in practice. We apply our control approach to traffic control of Transmission Control Protocol (TCP) networks and demonstrate its superior performance comparing to a fixed PID from computer simulations.

Experimental Study on Temperature Profile Following Control (온도궤적 추종제어에 관한 실험적 연구)

  • Yoon, Seok-Young;Song, Tae-Seung;Yoon, Gun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.239-239
    • /
    • 2000
  • This paper present experimental results on temperature trajectory tracking. The benefits of precalculated feedforward input together with PID feedback control are demonstrated by experimental results. To find the feedforward input, the plant (autoregresiive) model is first identified and convex optimization procedure is applied. PID controller is then implemented based on Ziegler-Nickels tuning rule to reduce effects of disturbances and modeling errors. Experimental results show an improvement in slope tracking performance over the fully PID controller.

  • PDF