• Title/Summary/Keyword: model based

Search Result 60,316, Processing Time 0.071 seconds

Wavelet based system identification for a nonlinear experimental model

  • Li, Luyu;Qin, Han;Niu, Yun
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • Traditional experimental verification for nonlinear system identification often faces the problem of experiment model repeatability. In our research, a steel frame experimental model is developed to imitate the behavior of a single story steel frame under horizontal excitation. Two adjustable rotational dampers are used to simulate the plastic hinge effect of the damaged beam-column joint. This model is suggested as a benchmark model for nonlinear dynamics study. Since the nonlinear form provided by the damper is unknown, a Morlet wavelet based method is introduced to identify the mathematical model of this structure under different damping cases. After the model identification, earthquake excitation tests are carried out to verify the generality of the identified model. The results show the extensive applicability and effectiveness of the identification method.

BAYQUAL Model for the Water Quality Simulation of a Bay Using Finite Element Method (유한요소법에 의한 하구의 수질모델 BAYQUAL)

  • 류병로;한양수
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.355-361
    • /
    • 1999
  • The aim of this study is to develop the water quality simulation model (BAYQUAL) that deal with the physical, chemical and biological aspects of fate/behavior of pollutants in the bay. BAYQUAL is a two dimensional, time-variable finite element water quality model based on the flow simulation model in bay(BAYFLOW). The algorithm is composed of a hydrodynamic module which solves the equations of motion and continuity, a pollutnat dispersion module which solves the dispersion-advection equation. The applicability and feasibility of the model are discussed by applications of the model to the Kwangyang bay of south coastal waters of Korea. Based on the field data, the BAYQUAL model was calibrated and verified. The results were in good agreement with measured value within relative error of 14% for COD, T-N, T-P. Numerical simulations of velocity components and tide amplitude(M2) were agreed closely with the actual data.

  • PDF

Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based (Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1147-1151
    • /
    • 2009
  • In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.

  • PDF

Investigation of Sensor Models for Precise Geolocation of GOES-9 Images

  • Hur Dongseok;Lee Tae-Yoon;Kim Taejung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.91-94
    • /
    • 2005
  • A numerical formula that presents relationship between a point of a satellite image and its ground position is called a sensor model. For precise geolocation of satellite images, we need an error-free sensor model. However, the sensor model based on GOES ephemeris data has some error, in particular after Image Motion Compensation (IMC) mechanism has been turned off. To solve this problem, we investigate three sensor models: Collinearity model, Direct Linear Transform (DLT) model and Orbit-based model. We apply matching between GOES images and global coastline database and use successful results as control points. With control points we improve the initial image geolocation accuracy using the three models. We compare results from three sensor models that are applied to GOES-9 images. As a result, a suitable sensor model for precise geolocation of GOES-9 images is proposed.

  • PDF

A GA-based Classification Model for Predicting Consumer Choice (유전 알고리듬 기반 제품구매예측 모형의 개발)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.29-41
    • /
    • 2009
  • The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate Its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss Its methodological characteristics in comparison with other existing classification methods. Also, we conduct a series of experiments employing survey data of consumer choices of MP3 players to assess the prediction power of the model. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

A GA-based Classification Model for Predicting Consumer Choice (유전 알고리듬 기반 제품구매예측 모형의 개발)

  • Min, Jae-Hyeong;Jeong, Cheol-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.1-7
    • /
    • 2008
  • The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss its methodological characteristics in comparison with other existing classification methods. Also, to assess the prediction power of the model, we conduct a series of experiments employing survey data of consumer choices of MP3 players. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.

  • PDF

Software Model Integration Using Metadata Model Based on Linked Data (Linked Data 기반의 메타데이타 모델을 활용한 소프트웨어 모델 통합)

  • Kim, Dae-Hwan;Jeong, Chan-Ki
    • Journal of Information Technology Services
    • /
    • v.12 no.3
    • /
    • pp.311-321
    • /
    • 2013
  • In the community of software engineering, diverse modeling languages are used for representing all relevant information in the form of models. Also many different models such as business model, business process model, product models, interface models etc. are generated through software life cycles. In this situation, models need to be integrated for enterprise integration and enhancement of software productivity. Researchers propose rebuilding models by a specific modeling language, using a intemediate modeling language and using common reference for model integration. However, in the current approach it requires a lot of cost and time to integrate models. Also it is difficult to identify common objects from several models and to update objects in the repository of common model objects. This paper proposes software model integration using metadata model based on Linked data. We verify the effectiveness of the proposed approach through a case study.

A Bayesian Approach to Detecting Outliers Using Variance-Inflation Model

  • Lee, Sangjeen;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.805-814
    • /
    • 2001
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for outliers problem and also analyze it in linear regression model using a Bayesian approach with the variance-inflation model. We will use Geweke's(1996) ideas which is based on the data augmentation method for detecting outliers in linear regression model. The advantage of the proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability The sampling based approach can be used to allow the complicated Bayesian computation. Finally, our proposed methodology is applied to a simulated and a real data.

  • PDF

A study on the adaptive predictive control of steam-reforming plant using bilinear model (쌍일차 모델을 이용한 스팀개질 플랜트의 적응예측제어에 관한 연구)

  • 오세천;여영구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.156-159
    • /
    • 1996
  • An adaptive predictive control for steam-reforming plant which consist of a steam-gas reformer and a waste heat steam-boiler was studied by using MIMO bilinear model. The simulation experiments of the process identification were performed by using linear and bilinear models. From the simulation results it was found that the bilinear model represented the dynamic behavior of a steam-reforming plant very well. ARMA model was used in the process identification and the adaptive predictive control. To verify the performance and effectiveness of the adaptive predictive controller proposed in this study the simulation results of steam-reforming plant control based on bilinear model were compared to those of linear model. The simulation results showed that the adaptive predictive controller based on bilinear model provides better performance than those of linear model.

  • PDF