• Title/Summary/Keyword: model based

Search Result 60,316, Processing Time 0.071 seconds

Location-based Advertisement Recommendation Model for Customer Relationship Management under the Mobile Communication Environment (이동통신 환경 하에서의 고객관계관리를 위한 지역광고 추천 모형)

  • Ahn, Hyun-Chul;Han, In-Goo;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.16 no.4
    • /
    • pp.239-254
    • /
    • 2006
  • Location-based advertising or application has been one of the drivers of third-generation mobile operators' marketing efforts in the past few years. As a result, many studies on location-based marketing or advertising have been proposed for recent several years. However, these approaches have two common shortcomings. First. most of them just suggested the theoretical architectures, which were too abstract to apply it to the real-world cases. Second, many of these approaches only consider service provider (seller) rather than customers (buyers). Thus, the prior approaches fit to the automated sales or advertising rather than the implementation of CRM. To mitigate these limitations, this study presents a novel advertisement recommendation model for mobile users. We call our model MAR-CF (Mobile Advertisement Recommender using Collaborative Filtering). Our proposed model is based on traditional CF algorithm, but we adopt the multi-dimensional personalization model to conventional CF for enabling location-based advertising for mobile users. Thus, MAR-CF is designed to make recommendation results for mobile users by considering location, time, and needs type. To validate the usefulness of our recommendation model. we collect the real-world data for mobile advertisements, and perform an empirical validation. Experimental results show that MAR-CF generates more accurate prediction results than other comparative models.

An automatic 3D CAD model errors detection method of aircraft structural part for NC machining

  • Huang, Bo;Xu, Changhong;Huang, Rui;Zhang, Shusheng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-260
    • /
    • 2015
  • Feature-based NC machining, which requires high quality of 3D CAD model, is widely used in machining aircraft structural part. However, there has been little research on how to automatically detect the CAD model errors. As a result, the user has to manually check the errors with great effort before NC programming. This paper proposes an automatic CAD model errors detection approach for aircraft structural part. First, the base faces are identified based on the reference directions corresponding to machining coordinate systems. Then, the CAD models are partitioned into multiple local regions based on the base faces. Finally, the CAD model error types are evaluated based on the heuristic rules. A prototype system based on CATIA has been developed to verify the effectiveness of the proposed approach.

Design of a Model Based Controller with Safety (안전성을 고려한 모델 기반 제어기 설계)

  • Shin, Bum-Sik;Park, Jeong-Hoon;Moon, Chan-Woo;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.9-14
    • /
    • 2013
  • Model based design method reduces product development period and increases system software safety. In this paper, a BLDC motor controller based on model based design method is designed with Simulink and implemented with auto generated code which is written in C language. To retain the safety of software, this model is implemented according to MISRA AC SLSF guide. The validity of the implemented controller is verified with a real position control experiment, and execution times of each control loops are measured to compare the system performance of the conventional design and the model based design.

A participatory action research on the developing and applying mathematical situation based problem solving instruction model (상황중심의 문제해결모형을 적용한 수학 수업의 실행연구)

  • Kim, Nam-Gyun;Park, Young-Eun
    • Communications of Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.429-459
    • /
    • 2009
  • The purpose of this study was to help the students deepen their mathematical understanding and practitioner improve her mathematics lessons. The teacher-researcher developed mathematical situation based problem solving instruction model which was modified from PBL(Problem Based Learning instruction model). Three lessons were performed in the cycle of reflection, plan, and action. As a result of performance, reflective knowledges were noted as followed points; students' mathematical understanding, mathematical situation based problem solving instruction model, improvement of mathematics teachers.

  • PDF

Stabilization Analysis for Switching-Type Fuzzy-Model-Based Controller (스위칭 모드 퍼지 모델 기반 제어기를 위한 안정화 문제 해석)

  • 김주원;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.793-800
    • /
    • 2001
  • This paper deals with a new design methodology for a switching-type fuzzy-model-based controller in continuous and discrete-time system. Takagi-Sugeno (TS) fuzzy model is employed to design the switching-type fuzzy-model-based controller. A switching-type fuzzy-model-based controller is constructed based on the spirit of “divide and conquer”. The global system which has several rules in divided into several subsystems and then, a solution is found at each subsystem. The global solution is determined by a conjunction of the solutions of each subsystem. The design conditions are formulated in terns of linear matrix inequalities (LMIs), which guarantee the stabilization of a given TS fuzzy system. Simulation examples are included for ensuring the proposed control method.

  • PDF

An experience on the model-based evaluation of pharmacokinetic drug-drug interaction for a long half-life drug

  • Hong, Yunjung;Jeon, Sangil;Choi, Suein;Han, Sungpil;Park, Maria;Han, Seunghoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.545-553
    • /
    • 2021
  • Fixed-dose combinations development requires pharmacokinetic drugdrug interaction (DDI) studies between active ingredients. For some drugs, pharmacokinetic properties such as long half-life or delayed distribution, make it difficult to conduct such clinical trials and to estimate the exact magnitude of DDI. In this study, the conventional (non-compartmental analysis and bioequivalence [BE]) and model-based analyses were compared for their performance to evaluate DDI using amlodipine as an example. Raw data without DDI or simulated data using pharmacokinetic models were compared to the data obtained after concomitant administration. Regardless of the methodology, all the results fell within the classical BE limit. It was shown that the model-based approach may be valid as the conventional approach and reduce the possibility of DDI overestimation. Several advantages (i.e., quantitative changes in parameters and precision of confidence interval) of the model-based approach were demonstrated, and possible application methods were proposed. Therefore, it is expected that the model-based analysis is appropriately utilized according to the situation and purpose.

Few-Shot Image Synthesis using Noise-Based Deep Conditional Generative Adversarial Nets

  • Msiska, Finlyson Mwadambo;Hassan, Ammar Ul;Choi, Jaeyoung;Yoo, Jaewon
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 2021
  • In recent years research on automatic font generation with machine learning mainly focus on using transformation-based methods, in comparison, generative model-based methods of font generation have received less attention. Transformation-based methods learn a mapping of the transformations from an existing input to a target. This makes them ambiguous because in some cases a single input reference may correspond to multiple possible outputs. In this work, we focus on font generation using the generative model-based methods which learn the buildup of the characters from noise-to-image. We propose a novel way to train a conditional generative deep neural model so that we can achieve font style control on the generated font images. Our research demonstrates how to generate new font images conditioned on both character class labels and character style labels when using the generative model-based methods. We achieve this by introducing a modified generator network which is given inputs noise, character class, and style, which help us to calculate losses separately for the character class labels and character style labels. We show that adding the character style vector on top of the character class vector separately gives the model rich information about the font and enables us to explicitly specify not only the character class but also the character style that we want the model to generate.

Adaptive Control based on a ParametricAffine Model for tail-control led Missiles (매개변수화 어파인 모델에 기반한 꼬리날개 제어유도탄의 적응제어)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.2-2
    • /
    • 2000
  • This paper presents an adaptive control against uncertainties in tail-controlled STT (skid-to-Turn) missiles. First, we derive an analytic uncertainty model from a parametricaffine missile model developed by the authors. Based on this analytic model, an adaptive feedbacklinearizing control law accompanied by a sliding model control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme is demonstrated by simulation.

  • PDF

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

Fuzzy Model-Based Fault Detection Method of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 퍼지모델 기반 고장검출 방법)

  • Moon, Byoung-Joon;Kim, Dong-Han;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1009-1013
    • /
    • 2009
  • In this paper, a robust fault detection method for varying temperature based on fuzzy model is proposed. To develop a robust force estimation model, it needs temperature information because the output of force sensor is affected by a temperature variation. The nonlinear dynamic system, such as the parking force of the EPB (Electronic Parking Brake) system is necessary to have a higher order equation model. But, because of the calculation time, the higher order equation model is hard to be used in real application. In case of the lower order equation model, the result is not as accurate as acceptable. To solve this problem, the robust fuzzy model-based fault detection is developed. A proposed fault detection method for varying temperature is verified by HILS (hardware in the loop simulation).