• Title/Summary/Keyword: model B3

Search Result 3,810, Processing Time 0.036 seconds

A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees (대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석)

  • 김봉주;이성재;권순용;탁계래;이권용
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.401-410
    • /
    • 2003
  • This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.

EVALUATING THE RELIABILITY AND REPEATABILITY OF THE DIGITAL COLOR ANALYSIS SYSTEM FOR DENTISTRY (치과용 디지털 색상 분석용 기기의 정확성과 재현 능력에 대한 평가)

  • Jeong, Joong-Jae;Park, Su-Jung;Cho, Hyun-Gu;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.352-368
    • /
    • 2008
  • This study was done to evaluate the reliability of the digital color analysis system (ShadeScan, CYNOVAD, Montreal. Canada) for dentistry. Sixteen tooth models were made by injecting the A2 shade chemical cured resin for temporary crown into the impression acquired from 16 adults. Surfaces of the model teeth were polished with resin polishing cloth. The window of the ShadeScan handpiece was placed on the labial surface of tooth and tooth images were captured, and each tooth shade was analyzed with the ShadeScan software. Captured images were selected in groups, and compared one another. Two models were selected to evaluate repeatability of ShadeScan, and shade analysis was performed 10 times for each tooth. And, to ascertain the color difference of same shade code analyzed by ShadeScan, CIE $L^*a^*b^*$values of shade guide of Gradia Direct (GC, Tokyo, Japan) were measured on the white and black background using the Spectrolino (GretagMacbeth, USA), and Shade map of each shade guide was captured using the ShadeScan. There were no teeth that were analyzed as A2 shade and unique shade. And shade mapping analyses of the same tooth revealed similar shade and distribution except incisal third. Color difference (${\Delta}E^*$) among the Shade map which analyzed as same shade by ShadeScan were above 3. Within the limits of this study, digital color analysis instrument for dentistry has relatively high repeatability, but has controversial in accuracy.

The Suitable Region and Site for 'Fuji' Apple Under the Projected Climate in South Korea (미래 시나리오 기후조건하에서의 사과 '후지' 품종 재배적지 탐색)

  • Kim, Soo-Ock;Chung, U-Ran;Kim, Seung-Heui;Choi, In-Myung;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.162-173
    • /
    • 2009
  • Information on the expected geographical shift of suitable zones for growing crops under future climate is a starting point of adaptation planning in agriculture and is attracting much concern from policy makers as well as researchers. Few practical schemes have been developed, however, because of the difficulty in implementing the site-selection concept at an analytical level. In this study, we suggest site-selection criteria for quality Fuji apple production and integrate geospatial data and information available in public domains (e.g., digital elevation model, digital soil maps, digital climate maps, and predictive models for agroclimate and fruit quality) to implement this concept on a GIS platform. Primary criterion for selecting sites suitable for Fuji apple production includes land cover, topography, and soil texture. When the primary criterion is satisfied, climatic conditions such as the length of frost free season, freezing risk during the overwintering period, and the late frost risk in spring are tested as the secondary criterion. Finally, the third criterion checks for fruit quality such as color and shape. Land attributes related to these factors in each criterion were implemented in ArcGIS environment as relevant raster layers for spatial analysis, and retrieval procedures were automated by writing programs compatible with ArcGIS. This scheme was applied to the A1B projected climates for South Korea in the future normal years (2011-2040, 2041-2070, and 2071-2100) as well as the current climate condition observed in 1971-2000 for selecting the sites suitable for quality Fuji apple production in each period. Results showed that this scheme can figure out the geographical shift of suitable zones at landscape scales as well as the latitudinal shift of northern limit for cultivation at national or regional scales.

Analysis of Economic and Environmental Effects of Remanufactured Furniture Through Case Studies (사례분석을 통한 사용 후 가구 재제조의 경제적·환경적 효과 분석)

  • Lee, Jong-Hyo;Kang, Hong-Yoon;Hwang, Yong Woo;Hwang, Hyeon-Jeong
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.67-76
    • /
    • 2022
  • The furniture industry has a high possibility to create value-added and a high potential to create new occupations due to the characteristics of the industry, which mainly consists of small and medium-sized enterprises (SMEs). However, the used furniture, which has sufficient reuse value, is also crushed and used as solid refuse fuel (SRF) recently. Besides, the number of waste treatment companies continues to decrease, and it occurs congestion of wood waste. As a way to solve the issue, a business model development of remanufacturing used furniture can be suggested as an alternative due to its high circular economic efficiency. Remanufacturing business including furniture industry creates positive effects in various aspects such as economic, environmental and job creation. In other words, remanufacturing is an effective recycling way to reduce input resources and energy in the production process. The results of economic analysis show that the expected annual revenue from the single worker furniture remanufacturing site was 104 million won which is 3.11 times more than the average income of a single-worker household in Korea and its B/C ratio was estimated about 30 which means high business feasibility. Revenue through furniture remanufacturing also showed 320 times higher than that of SRF production from the perspective of weight. In addition, it is shown that the GHGs reduction from the furniture remanufacturing is 2.2 ton CO2-eq. per year, which is similar to the amount of GHGs absorption effect of 937 pine trees or 622 Korean oak trees annually. Thus the results of this study demonstrate that it is important to adopt an appropriate recycling method considering the economic and environmental effects at the end-of-life stage.

How Enduring Product Involvement and Perceived Risk Affect Consumers' Online Merchant Selection Process: The 'Required Trust Level' Perspective (지속적 관여도 및 인지된 위험이 소비자의 온라인 상인선택 프로세스에 미치는 영향에 관한 연구: 요구신뢰 수준 개념을 중심으로)

  • Hong, Il-Yoo B.;Lee, Jung-Min;Cho, Hwi-Hyung
    • Asia pacific journal of information systems
    • /
    • v.22 no.1
    • /
    • pp.29-52
    • /
    • 2012
  • Consumers differ in the way they make a purchase. An audio mania would willingly make a bold, yet serious, decision to buy a top-of-the-line home theater system, while he is not interested in replacing his two-decade-old shabby car. On the contrary, an automobile enthusiast wouldn't mind spending forty thousand dollars to buy a new Jaguar convertible, yet cares little about his junky component system. It is product involvement that helps us explain such differences among individuals in the purchase style. Product involvement refers to the extent to which a product is perceived to be important to a consumer (Zaichkowsky, 2001). Product involvement is an important factor that strongly influences consumer's purchase decision-making process, and thus has been of prime interest to consumer behavior researchers. Furthermore, researchers found that involvement is closely related to perceived risk (Dholakia, 2001). While abundant research exists addressing how product involvement relates to overall perceived risk, little attention has been paid to the relationship between involvement and different types of perceived risk in an electronic commerce setting. Given that perceived risk can be a substantial barrier to the online purchase (Jarvenpaa, 2000), research addressing such an issue will offer useful implications on what specific types of perceived risk an online firm should focus on mitigating if it is to increase sales to a fullest potential. Meanwhile, past research has focused on such consumer responses as information search and dissemination as a consequence of involvement, neglecting other behavioral responses like online merchant selection. For one example, will a consumer seriously considering the purchase of a pricey Guzzi bag perceive a great degree of risk associated with online buying and therefore choose to buy it from a digital storefront rather than from an online marketplace to mitigate risk? Will a consumer require greater trust on the part of the online merchant when the perceived risk of online buying is rather high? We intend to find answers to these research questions through an empirical study. This paper explores the impact of enduring product involvement and perceived risks on required trust level, and further on online merchant choice. For the purpose of the research, five types or components of perceived risk are taken into consideration, including financial, performance, delivery, psychological, and social risks. A research model has been built around the constructs under consideration, and 12 hypotheses have been developed based on the research model to examine the relationships between enduring involvement and five components of perceived risk, between five components of perceived risk and required trust level, between enduring involvement and required trust level, and finally between required trust level and preference toward an e-tailer. To attain our research objectives, we conducted an empirical analysis consisting of two phases of data collection: a pilot test and main survey. The pilot test was conducted using 25 college students to ensure that the questionnaire items are clear and straightforward. Then the main survey was conducted using 295 college students at a major university for nine days between December 13, 2010 and December 21, 2010. The measures employed to test the model included eight constructs: (1) enduring involvement, (2) financial risk, (3) performance risk, (4) delivery risk, (5) psychological risk, (6) social risk, (7) required trust level, (8) preference toward an e-tailer. The statistical package, SPSS 17.0, was used to test the internal consistency among the items within the individual measures. Based on the Cronbach's ${\alpha}$ coefficients of the individual measure, the reliability of all the variables is supported. Meanwhile, the Amos 18.0 package was employed to perform a confirmatory factor analysis designed to assess the unidimensionality of the measures. The goodness of fit for the measurement model was satisfied. Unidimensionality was tested using convergent, discriminant, and nomological validity. The statistical evidences proved that the three types of validity were all satisfied. Now the structured equation modeling technique was used to analyze the individual paths along the relationships among the research constructs. The results indicated that enduring involvement has significant positive relationships with all the five components of perceived risk, while only performance risk is significantly related to trust level required by consumers for purchase. It can be inferred from the findings that product performance problems are mostly likely to occur when a merchant behaves in an opportunistic manner. Positive relationships were also found between involvement and required trust level and between required trust level and online merchant choice. Enduring involvement is concerned with the pleasure a consumer derives from a product class and/or with the desire for knowledge for the product class, and thus is likely to motivate the consumer to look for ways of mitigating perceived risk by requiring a higher level of trust on the part of the online merchant. Likewise, a consumer requiring a high level of trust on the merchant will choose a digital storefront rather than an e-marketplace, since a digital storefront is believed to be trustworthier than an e-marketplace, as it fulfills orders by itself rather than acting as an intermediary. The findings of the present research provide both academic and practical implications. The first academic implication is that enduring product involvement is a strong motivator of consumer responses, especially the selection of a merchant, in the context of electronic shopping. Secondly, academicians are advised to pay attention to the finding that an individual component or type of perceived risk can be used as an important research construct, since it would allow one to pinpoint the specific types of risk that are influenced by antecedents or that influence consequents. Meanwhile, our research provides implications useful for online merchants (both online storefronts and e-marketplaces). Merchants may develop strategies to attract consumers by managing perceived performance risk involved in purchase decisions, since it was found to have significant positive relationship with the level of trust required by a consumer on the part of the merchant. One way to manage performance risk would be to thoroughly examine the product before shipping to ensure that it has no deficiencies or flaws. Secondly, digital storefronts are advised to focus on symbolic goods (e.g., cars, cell phones, fashion outfits, and handbags) in which consumers are relatively more involved than others, whereas e- marketplaces should put their emphasis on non-symbolic goods (e.g., drinks, books, MP3 players, and bike accessories).

  • PDF

An Analysis on Factors Affecting Local Control and Survival in Nasopharvngeal Carcinoma (비인두암의 국소 종양 치유와 생존율에 관한 예후 인자 분석)

  • Chung Woong-Ki;Cho Jae-Shik;Park Seung Jin;Lee Jae-Hong;Ahn Sung Ja;Nam Taek Keun;Choi Chan;Noh Young Hee;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.17 no.2
    • /
    • pp.91-99
    • /
    • 1999
  • Propose : This study was performed to find out the prognostic factors affecting local control, survival and disease free survival rate in nasopharyngeal carcinomas treated with chemotherapy and radiation therapy. Materials and Methods : We analysed 47 patients of nasopharyngeal carcinomas, histologically confirmed and treated at Chonnam University Hospital between July 1986 and June 1996, retrospectively. Range of patients' age were from 16 to 80 years (median; 52 years). Thirty three (70$\%$) patients was male. Histological types were composed of 3 (6$\%$) keratinizing, 30 (64$\%$) nonkeratinizing squamous cell carcinoma and 13 (28$\%$) undifferentiated carcinoma. Histoiogicai type was not known in 1 patient (2$\%$). We restaged according to the staging system of 1997 American Joint Committee on Cancer Forty seven patients were recorded as follows: 71: 11 (23$\%$), T2a; 6 (13$\%$), T2b; 9 (19$\%$), 73; 7 (15$\%$), 74: 14 (30$\%$), and NO; 7 (15$\%$), Nl: 14 (30$\%$), N2; 21 (45%), N3: 5 (10%). Clinical staging was grouped as follows: Stage 1; 2 (4$\%$), IIA: 2 (4$\%$), IIB; 10 (21$\%$), III; 14 (30$\%$), IVA; 14 (30$\%$) and IVB; 5 (11$\%$). Radiation therapy was done using 6 MV and 10 MV X- ray of linear accelerator. Electron beam was used for the Iymph nodes of posterior neck after 4500 cGy. The range of total radiation dose delivered to the primary tumor was from 6120 to 7920 cGy (median; 7020 cGy). Neoadjuvant chemotherapy was performed with cisplatin +5-fluorouracil (25 patients) or cisplatin+pepleomycin (17 patients) with one to three cycles. Five patients did not received chemotherapy. Local control rate, survival and disease free suwival rate were calculated by Kaplan-Meier method. Generalized Wilcoxon test was used to evaluate the difference of survival rates between groups. multivariate analysis using Cox proportional hazard model was done for finding prognostic factors. Results: Local control rate was 81$\%$ in 5 year. Five year survival rate was 60$\%$ (median survival; 100 months). We included age, sex, cranial nerve deflicit, histologic type, stage group, chemotherapy, elapsed days between chemotherapy and radiotherapy, total radiation dose, period of radiotherapy as potential prognostic factors in multivariate analysis. As a result, cranial none deficit (P=0.004) had statistical significance in local control rate. Stage group and total radiation dose were significant prognostic factors in survival (P=0.000, P=0.012), and in disease free survival rates (P=0.003, P=0.008), respectively. Common complications were xerostomia, tooth and ear problems. Hypothyroidism was developed in 2 patients. Conclusion : In our study, cranial none deficit was a significant prognostic factor in local control rate, and stage group and total radiation dose were significant factors in both survival and disease free survival of nasopharyngeal carcinoma. We have concluded that chemotherapy and radiotherapy used in our patients were effective without any serious complication.

  • PDF

Estimating Grain Weight and Grain Nitrogen Content with Temperature, Solar Radiation and Growth Traits During Grain-Filling Period in Rice (등숙기 온도 및 일사량과 생육형질을 이용한 벼 종실중 및 종실질소함량 추정)

  • Lee, Chung-Kuen;Kim, Jun-Hwan;Son, Ji-Young;Yoon, Young-Hwan;Seo, Jong-Ho;Kwon, Young-Up;Shin, Jin-Chul;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.275-283
    • /
    • 2010
  • This experiment was conducted to construct process models to estimate grain weight (GW) and grain nitrogen content (GN) in rice. A model was developed to describe the dynamic pattern of GW and GN during grain-filling period considering their relationships with temperature, solar radiation and growth traits such as LAI, shoot dry-weight, shoot nitrogen content, grain number during grain filling. Firstly, maximum grain weight (GWmax) and maximum grain nitrogen content (GNmax) equation was formulated in relation to Accumulated effective temperature (AET) ${\times}$ Accumulated radiation (AR) using boundary line analysis. Secondly, GW and GN equation were created by relating the difference between GW and GWmax and the difference between GN and GNmax, respectively, with growth traits. Considering the statistics such as coefficient of determination and relative root mean square of error and number of predictor variables, appropriate models for GW and GN were selected. Model for GW includes GWmax determined by AET ${\times}$ AR, shoot dry weight and grain number per unit land area as predictor variables while model for GN includes GNmax determined by AET ${\times}$ AR, shoot N content and grain number per unit land area. These models could explain the variations of GW and GN caused not only by variations of temperature and solar radiation but also by variations of growth traits due to different sowing date, nitrogen fertilization amount and row spacing with relatively high accuracy.

Semantic Process Retrieval with Similarity Algorithms (유사도 알고리즘을 활용한 시맨틱 프로세스 검색방안)

  • Lee, Hong-Joo;Klein, Mark
    • Asia pacific journal of information systems
    • /
    • v.18 no.1
    • /
    • pp.79-96
    • /
    • 2008
  • One of the roles of the Semantic Web services is to execute dynamic intra-organizational services including the integration and interoperation of business processes. Since different organizations design their processes differently, the retrieval of similar semantic business processes is necessary in order to support inter-organizational collaborations. Most approaches for finding services that have certain features and support certain business processes have relied on some type of logical reasoning and exact matching. This paper presents our approach of using imprecise matching for expanding results from an exact matching engine to query the OWL(Web Ontology Language) MIT Process Handbook. MIT Process Handbook is an electronic repository of best-practice business processes. The Handbook is intended to help people: (1) redesigning organizational processes, (2) inventing new processes, and (3) sharing ideas about organizational practices. In order to use the MIT Process Handbook for process retrieval experiments, we had to export it into an OWL-based format. We model the Process Handbook meta-model in OWL and export the processes in the Handbook as instances of the meta-model. Next, we need to find a sizable number of queries and their corresponding correct answers in the Process Handbook. Many previous studies devised artificial dataset composed of randomly generated numbers without real meaning and used subjective ratings for correct answers and similarity values between processes. To generate a semantic-preserving test data set, we create 20 variants for each target process that are syntactically different but semantically equivalent using mutation operators. These variants represent the correct answers of the target process. We devise diverse similarity algorithms based on values of process attributes and structures of business processes. We use simple similarity algorithms for text retrieval such as TF-IDF and Levenshtein edit distance to devise our approaches, and utilize tree edit distance measure because semantic processes are appeared to have a graph structure. Also, we design similarity algorithms considering similarity of process structure such as part process, goal, and exception. Since we can identify relationships between semantic process and its subcomponents, this information can be utilized for calculating similarities between processes. Dice's coefficient and Jaccard similarity measures are utilized to calculate portion of overlaps between processes in diverse ways. We perform retrieval experiments to compare the performance of the devised similarity algorithms. We measure the retrieval performance in terms of precision, recall and F measure? the harmonic mean of precision and recall. The tree edit distance shows the poorest performance in terms of all measures. TF-IDF and the method incorporating TF-IDF measure and Levenshtein edit distance show better performances than other devised methods. These two measures are focused on similarity between name and descriptions of process. In addition, we calculate rank correlation coefficient, Kendall's tau b, between the number of process mutations and ranking of similarity values among the mutation sets. In this experiment, similarity measures based on process structure, such as Dice's, Jaccard, and derivatives of these measures, show greater coefficient than measures based on values of process attributes. However, the Lev-TFIDF-JaccardAll measure considering process structure and attributes' values together shows reasonably better performances in these two experiments. For retrieving semantic process, we can think that it's better to consider diverse aspects of process similarity such as process structure and values of process attributes. We generate semantic process data and its dataset for retrieval experiment from MIT Process Handbook repository. We suggest imprecise query algorithms that expand retrieval results from exact matching engine such as SPARQL, and compare the retrieval performances of the similarity algorithms. For the limitations and future work, we need to perform experiments with other dataset from other domain. And, since there are many similarity values from diverse measures, we may find better ways to identify relevant processes by applying these values simultaneously.

Three Teaching-Learning Plans for Integrated Science Teaching of 'Energy' Applying Knowledge-, Social Problem-, and Individual Interest-Centered Approaches (지식내용, 사회문제, 개인흥미 중심의 통합과학교육 접근법을 적용한 '에너지' 주제의 교수.학습 방안 개발(II))

  • Lee, Mi-Hye;Son, Yeon-A;Young, Donald B.;Choi, Don-Hyung
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.2
    • /
    • pp.357-384
    • /
    • 2001
  • In this paper, we described practical teaching-learning plans based on three different theoretical approaches to Integrated Science Education (ISE): a knowledge centered ISE, a social problem centered ISE, and an individual interest centered ISE. We believe that science teachers can understand integrated science education through this paper and they are able to apply simultaneously our integrated science teaching materials to their real instruction in classroom. For this we developed integrated science teaching-learning plans for the topic of energy which has a integrated feature strongly among integrated science subject contents. These modules were based upon the teaching strategies of 'Energy' following each integrated directions organized in the previous paper (Three Strategies for Integrated Science Teaching of "Energy" Applying Knowledge, Social Problem, and Individual Interest Centered Approaches) and we applied instruction models fitting each features of integrated directions to the teaching strategies of 'Energy'. There is a concrete describing on the above three integrated science teaching-learning plans as follows. 1. For the knowledge centered integration, we selected the topic, 'Journey of Energy' and we tried to integrate the knowledge of physics, chemistry, biology, and earth science applying the instruction model of 'Free Discovery Learning' which is emphasized on concepts and inquiry. 2. For the social problem centered integration, we selected the topic, 'Future of Energy' to resolve the science-related social problems and we applied the instruction model of 'Project Learning' which is emphasized on learner's cognitive process to the topic. 3. For the individual interest centered integration, we selected the topic, 'Transformation of Energy' for the integration of science and individual interest and we applied the instruction model of 'Project Learning' centering learner's interest and concern. Based upon the above direction, we developed the integrated science teaching-learning plans as following steps. First, we organized 'Integrated Teaching-Learning Contents' according to the topics. Second, based upon the above organization, we designed 'Instructional procedures' to integrate within the topics. Third, in accordance with the above 'Instructional Procedures', we created 'Instructional Coaching Plan' that can be applied in the practical world of real classrooms. These plans can be used as models for the further development of integrated science instruction for teacher preparation, textbook development, and classroom learning.

  • PDF

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.