• Title/Summary/Keyword: model B3

Search Result 3,811, Processing Time 0.035 seconds

A 3D Face Reconstruction and Tracking Method using the Estimated Depth Information (얼굴 깊이 추정을 이용한 3차원 얼굴 생성 및 추적 방법)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.21-28
    • /
    • 2011
  • A 3D face shape derived from 2D images may be useful in many applications, such as face recognition, face synthesis and human computer interaction. To do this, we develop a fast 3D Active Appearance Model (3D-AAM) method using depth estimation. The training images include specific 3D face poses which are extremely different from one another. The landmark's depth information of landmarks is estimated from the training image sequence by using the approximated Jacobian matrix. It is added at the test phase to deal with the 3D pose variations of the input face. Our experimental results show that the proposed method can efficiently fit the face shape, including the variations of facial expressions and 3D pose variations, better than the typical AAM, and can estimate accurate 3D face shape from images.

Development and Validation of Predictive Model for Foodborne Pathogens in Preprocessed Namuls and Wild Root Vegetables (전처리 나물류 및 구근류에서 병원성 미생물의 성장예측모델 개발 및 검증)

  • Enkhjargal, Lkhagvasarnai;Min, Kyung Jin;Yoon, Ki Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1690-1700
    • /
    • 2013
  • The objective of this study is to develop and validate predictive growth models for Bacillus cereus (diarrhea type) vegetative cells, spores and Staphylococcus aureus in preprocessed Namul (bracken and Chwinamul) and root vegetables (bellflower and burdock). For validation of model performance, growth data for S. aureus in preprocessed vegetables were collected at independent temperatures (18 and $30^{\circ}C$) not used in the model development. In addition, model performance of B. cereus (diarrhea type) in preprocessed vegetables was validated with an emetic type of B. cereus strain. In primary models, the specific growth rate (SGR) of the B. cereus spores was faster than that of the B. cereus vegetative cells, regardless of the kinds of vegetables at 24 and $35^{\circ}C$, while lag time (LT) of the B. cereus spores was longer than that of the B. cereus vegetative cells, except for burdock. The growth of B. cereus and S. aureus was not observed in bracken at temperatures lower than 13 and $8^{\circ}C$, respectively. The LT models for B. cereus (diarrhea type) in this study were suitable in predicting the growth of B. cereus (emetic type) on burdock and Chwinamul. On the other hand, SGR models for B. cereus (diarrhea type) were suitable for predicting the growth of B. cereus (emetic type) on all preprocessed vegetables. The developed models can be used to predict the risk of B. cereus and S. aureus in preprocessed Namul and root vegetables at the retail markets.

GCMs-Driven Snow Depth and Hydrological Simulation for 2018 Pyeongchang Winter Olympics (기후모형(GCMs)에 기반한 2018년 평창 동계올림픽 적설량 및 수문모의)

  • Kim, Jung Jin;Ryu, Jae Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.229-243
    • /
    • 2013
  • Hydrological simulation Program-Fortran (HSPF) model was used to simulate streamflow and snow depth at Pyengchang watershed. The selected Global Climate Models (GCMs) provided by the Coupled Model Intercomparision Project Phase 3 (CMIP3) were utilized to evaluate streamflow and snow depth driven by future climate scenarios, including A1, A1B, and B1. Bias-correlation and temporal downscaling processes have been performed to minimize systematic errors between GCMs and HSPF. Based on simulated monthly streamflow and snow depth after calibration, the results indicate that HSPF performs well. The correlation coefficient between the observed and simulated monthly streamflow is 0.94. Snow depth simulations also show high correlation coefficient, which is 0.91. The results indicate that snow depth in 2018 at Pyongchang winter olympic venues will decrease by 17.62%, 9.38%, and 7.25% in January, February, and March respectively, based on streamflow realizations induced by all GCMs ensembles.

A Data Dictionary for Procurement of Die and Mold Parts Based on PLIB Standard (PLIB에 기반한 전자상거래용 금형부품 데이터 사전의 구축)

  • 조준면;문두환;김흥기;한순흥;류병우
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.3
    • /
    • pp.37-52
    • /
    • 2003
  • ISO 13584 Parts Library (PLIB) standard is making its way into e-business as a norm for classifying products and their characteristics. PLIB is a multi-parts standard, and the Part 42: Methodology for structuring Parts families Provides the information model and design Principles for the data dictionary of parts library or e-catalog. If e-catalog systems are built using a data dictionary that is constructed based on PLIB dictionary data model, many different e-catalog systems can be easily integrated and interoperated. This paper studies the roles and requirements of the data dictionary in e-catalog, and applies the data model and design principles of PLIB Part 42 to construct a data dictionary from the viewpoint of ontology Based on the analysis results, we propose a data dictionary of die and mold parts, and implementat the B2B e-catalog system.

  • PDF

3-D Object Representation Using Part-based Superquadric Model from Range Image (부품 기반의 superquadric 모델을 이용한 거리 영상으로부터 3차원 물체 표현)

  • Lee, Seon-Ho;Kim, Tae-Eun;Choe, Jong-Su
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.201-207
    • /
    • 2001
  • 3차원 물체표현은 컴퓨터 비젼 분야에서 중요한 역할을 차지하고 있다. 본 논문에서는 체적 표현법의 일종인 부품기반의 superquadric 모델을 통하여 3차원 기계 부품 물체를 표현하는 기법을 제안하였다. 이러한 부품기반의 superquadric 모델은 크기, 이동, 회전, 그리고 변형 등의 유한개의 계수들만을 가지고 다양한 3차원 체적소의 형상 표현이 가능하다는 장점이 있다. 따라서, superquadric 형상복구 과정을 통해서 이들 superquadric 계수들을 추출함으로써 3차원 단일 체적소 표현이 가능하다. 이때, 형상복구 과정의 입력은 3차원 거리 데이터로, 형상복구 과정은 3차원 nfcp를 이루는 각 체적소에 속하는 거리 데이터들을 입력으로하는 적합도 측정함수의 최소 자승법(LSM)에 의해 이루어진다. 이후에 3차원 물체 각 체적소에 해당하는 superquadric 계수들을 얻는다. 결과적으로 3차원 전체 물체에 해당하는 superquadric 모델은 이들 각 체적소에 해당하는 계수들의 집합으로 표현된다. 컴퓨터에서 합성한 합성영상과 실제 거리영상에 대한 실험을 통해 제안한 방법의 유용성을 입증하였다.

  • PDF

CFD Study on Aerodynamic Characteristics of Frisbee (II) (CFD를 이용한 Frisbee의 공력 특성에 대한 고찰(II))

  • Kim C. W.;Chang B. H.;Lee J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.114-118
    • /
    • 2005
  • CFD simulation was peformed for 2D and 3D flying and rotating frisbees. Multiple reference method(MRF) was utilized to consider the rotation of 3D model. Geometry change of 2D model shows dramatic increase of lift, but 3D simulation results for geometry change show decrease of lift and drag. Ground effect increases the lift of the frisbee being close to ground.

  • PDF

Numerical Study of the Formability of Fiber Metal Laminates Based on Self-reinforced Polypropylene (자기 강화형 폴리프로필렌을 이용한 섬유 금속 적층판의 성형성에 관한 수치해석적 연구)

  • Lee, B.E.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.150-157
    • /
    • 2013
  • Fiber metal laminates (FMLs) are layered materials comprised of thin metal sheets and fiber reinforced plastic (FRP). This paper presents the numerical study of the formability enhancement of FMLs composed of an aluminum alloy and self-reinforced polypropylene (SRPP) composite. In this study, a numerical simulation based on finite element (FE) modeling is proposed to evaluate the formability of FMLs using ABAQUS/Explicit. The FE model, which included a single layer of solid and shell elements to model the blank, used discrete layers of the solid element with a contact model and shell elements with a friction based model for the aluminum alloy-composite interface conditions. This method allowed the description of each layer of FMLs and was able to simulate the interaction between the layers. It is noted through this research that the proposed numerical simulation described properly the formability enhancement of the FMLs and the simulation results showed good agreement with experimental results.

Analysis of Non-linearity Characteristic of GOCI (COMS 해양탑재체의 비선형성 특성 분석)

  • Kang, Geum-Sil;Youn, Heong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this study, the radiometric model of GOCI, which is constructed based on the functional model of sub-system, is introduced. Non-linearity for each channel is analyzed in terms of linear gain and nonlinear gain by using the radiometric model. The non-linearity characteristic is validated by using test data which have been achieved during ground test at payload level. The non-linearity $G^3$/b shows identical characteristic for all channels.

  • PDF

A study on the turning-motion of T/S SAEBADA in shallow water (실습선 새바다호의 천수역 선회운동에 관한 연구)

  • KIM, Su-Hyung;LEE, Chun-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.273-283
    • /
    • 2019
  • The authors has predicted the maneuvering characteristics of a fishing vessel in deep water using Kijima's empirical formula in a previous study. Since the Kijima's empirical formula was developed by a regression analysis of merchant vessels which have dimensions ($C_b$, L/B, etc.) that are different from those of fishing vessels, it was possible to make a prediction approximately even with inaccurate estimation. In this study, the authors estimated the turning-motion characteristics of a model ship of fisheries training ship in shallow water based on the results of its previous study. The turning-motion characteristics of the model ship in shallow water was found out through quantitative analysis according to the water depth to ship draft ratio (H/d). In conclusion, the turning-motion characteristics of the model ship had significant changes immediately after an H/d 1.5, and this result will be helpful for sailing in shallow water.

Analysis of Error Probability of Mobile Satellite Communication System In Korea Peninsula Area (한반도 지역에서 이동형 위성단말의 오류확률 분석)

  • Lee, Huikyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.67-71
    • /
    • 2019
  • In this paper, we derive a reference error probability performance in the environment where mobile satellite terminal is operated. When the satellite terminal moves, shadowing occurs due to the surrounding obstacles and the BER is lowered. We use the Lutz model simulating the environment in which mobile satellite terminals operate The Lutz model combines the Rician distribution with the Suzuki model. The error probability is derived from the numerical analysis of two distribution functions. The simulated results using the measured results in the Korean Peninsula forest area were similar to the BER results obtained using the Lutz model. Intuitively, the approximated results are similar to the measured results. Numerically, the BER error is about 3e-4 or less at an SNR of 30dB.