• 제목/요약/키워드: mode shape ratios

검색결과 55건 처리시간 0.018초

Submicron-scale Polymeric Patterns for Tribological Application in MEMS/NEMS

  • Singh R. Arvind;Yoon Eui-Sung;Kim Hong Joon;Kong Hosung;Jeong Hoon Eui;Suh Kahp Y.
    • KSTLE International Journal
    • /
    • 제6권2호
    • /
    • pp.33-38
    • /
    • 2005
  • Submicron-scale patterns made of polymethyl methacrylate (PMMA) were fabricated on silicon-wafer using a capillarity-directed soft lithographic technique. Polyurethane acrylate (PUA) stamps (Master molds) were used to fabricate the patterns. Patterns with three different aspect ratios were fabricated by varying the holding time. The patterns fabricated were the negative replica of the master mold. The patterns so obtained were investigated for their adhesion and friction properties at nano-scale using AFM. Friction tests were conducted in the range of 0-80 nN. Glass (Borosilicate) balls of diameter 1.25 mm mounted on cantilever (Contact Mode type NPS) were used as tips. Further, micro-friction tests were performed using a ball-on-flat type micro-tribe tester, under reciprocating motion, using a soda lime ball (1 mm diameter) under a normal load of 3,000 mN. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C$) and relative humidity ($45{\pm}5\%$). Results showed that the patterned samples exhibited superior tribological properties when compared to the silicon wafer and non-patterned sample (PMMA thin film) both at the nano and micro-scales, owing to their increased hydrophobicity and reduced real area of contact. In the case of patterns it was observed that their morphology (shape factor and size factor) was decisive in defining the real area of contact.

Temperature dependence of the effective anisotropy in Ni nanowire arrays

  • Meneses, Fernando;Urreta, Silvia E.;Escrig, Juan;Bercoff, Paula G.
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1240-1247
    • /
    • 2018
  • Magnetic hysteresis in Ni nanowire arrays grown by electrodeposition inside the pores of anodic alumina templates is studied as a function of temperature in the range between 5 K and 300 K. Nanowires with different diameters, aspect ratios, inter-wire distance in the array and surface condition (smooth and rough) are synthesized. These microstructure parameters are linked to the different free magnetic energy contributions determining coercivity and the controlling magnetization reversal mechanisms. Coercivity increases with temperature in arrays of nanowires with rough surfaces and small diameters -33 nm and 65 nm- when measured without removing the alumina template and/or the Al substrate. For thicker wires -200 nm in diameter and relatively smooth surfaces- measured without the Al substrate, coercivity decreases as temperature rises. These temperature dependences of magnetic hysteresis are described in terms of an effective magnetic anisotropy $K_a$, resulting from the interplay of magnetocrystalline, magnetoelastic and shape anisotropies, together with the magnetostatic interaction energy density between nanowires in the array. The experimentally determined coercive fields are compared with results of micromagnetic calculations, performed considering the magnetization reversal mode acting in each studied array and microstructure parameters. A method is proposed to roughly estimate the value of $K_a$ experimentally, from the hysteresis loops measured at different temperatures. These measured values are in agreement with theoretical calculations. The observed temperature dependence of coercivity does not arise from an intrinsic property of pure Ni but from the nanowires surface roughness and the way the array is measured, with or without the alumina template and/or the aluminum support.

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.

초산비닐수지계 접착제를 사용한 탄소섬유강화플라스틱 복합집성재의 휨 성능 (Bending Performance of Glulam Beams Reinforced with Carbon Fiber-Reinforced Plastics Bonded with Polyvinyl Acetate-Based Adhesive)

  • 박준철;신윤종;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권4호
    • /
    • pp.364-371
    • /
    • 2009
  • 본 연구에서는 체적비 0.7%, 2.1%의 탄소섬유강화플라스틱 강화 낙엽송 집성재 보를 제작하여 휨강도 성능을 평가하였다. 휨강도 시험 결과 복합집성재의 파괴형상은 인장응력부 최하층에서 1차 파괴가 일어났지만 탄소 섬유 보강층 상층부는 파괴되지 않았다. 인장응력부위에서 1차 파괴가 일어난 후에도 보강층 상층부는 강도를 유지하고 있어 계속 하중이 증가하면 보강층 상층부에서 2차 파괴가 일어났다. 탄소섬유강화플라스틱 복합집성재의 휨강도는 체적비 0.7%를 보강한 집성재의 경우 대조군 집성재(control 재)에 비해 1차 파괴시 휨강도는 28% 향상되었다. 보강층 상층까지 완전한 파괴가 일어났을 때의 휨강도는 55% 향상되었다. 탄소섬유강화플라스틱을 체적비의 2.1% 보강한 경우 대조군 집성재에 비해 휨강도가 77% 증가하였다. Romani가 제안한 파괴모드를 이용하여 산출된 탄소섬유강화플라스틱 복합집성재의 예측 중립축과 스트레인 게이지로 측정된 실측 중립축의 높이가 1.03으로 잘 일치하는 것을 확인할 수 있었다.