• Title/Summary/Keyword: mode shape and natural frequency

Search Result 354, Processing Time 0.026 seconds

Free Vibration Analysis of Helical Springs (헬리컬 스프링의 자유진동 해석)

  • 김월태;정명조;김현수;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.977-983
    • /
    • 2003
  • Free vibration analysis of helical springs was performed by the use of the commercial finite element analysis program, ANSYS. The investigation of national frequency was focused on the effect of various parameters such as boundary conditions, spring indices, number of coil turns and helix angles which are considered to affect the free vibration of a spring. The finite element method was validated by comparison with the result of a previouosly published literature. The similarity of frequency trend was shown among three boundary conditions: clamped-clamped, free-free, simpliy supported-simply supported but there was no similarity in light of mode shapes among them. Several modes showed similar frequencies on and near the frequencies identified by the natural frequency formula of Wahl. Natural frequencies increased with spring indices and number of turns decreasing and with helix angles increasing. The results investigated by finiete element method were compared with the experemental result and theoretical result and showed a good agreement among them.

  • PDF

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.

Vibration Characteristics of a Dummy Fuel Rod Supported by Spacer Grids (지지격자로 지지된 모의 연료봉의 진동특성)

  • Choi, Myoung-Hwan;Kang, Heung-Seok;Yoon, Kyung-Ho;Kim, Hyung-Kyu;Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.424-431
    • /
    • 2003
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods and maintains coolable geometry from an external load. A vibration test and a finite element analysis using ABAQUS on a dummy fuel rod continuously supported by Optimized H type(OHT) and New Doublet (ND) spacer grids arc performed to obtain the vibration characteristics such as natural frequencies and mode shapes an(1 to verify a finite element model. The results from the test and the finite element analysis are compared by modal assurance criteria (MAC) values. It is resulted that MACs for the first, the third and the fifth mode shapes are relatively good as compared with those of the second an(1 fourth ones. The natural frequency differences between two methods as well as the mode comparison results for the rod with OHT spacer grid are better than those with ND spacer grid. It is judged that the FE model for the ND spacer grid spring should be modified to consider the long contact length which actually happen when the spring supports the rod.

Comparison of Dynamic Property Estimation by Transient Vibration and Synchronized Human Excitation (건물의 상시진동계측과 인력가진계측을 통한 동적특성 비교)

  • Jang, Young-Ju;Cho, Bong-Ho;Kim, Hong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • The transient vibration test and synchronized human excitation is performed for low-rise concrete buildings and their identified natural frequency, damping ratio, and mode shape are compared. Form the identified dynamic parameters, it was found that the damping ratio obtained through the synchronized human excitation test is greater than those obtained from the transient vibration test. However, the mode shapes of the first mode are not significantly different regardless of the test method. Further, the stiffness of the interior brick partition considerably affect the stiffness of the entire building such that the first natural mode of rectangular shaped building occurred in the longitudinal direction rather than transverse direction.

A Study on the Effectiveness and Convergency of Five Damage Measures for Damage Assessment of 2-Dimensional Truss Sturctures using Extended Kalman Filter (확장 칼만 필터를 이용한 2차원 트러스 구조물의 손상 추정에 적용된 5가지 손상지표의 유효성 및 수렴성에 관한 연구)

  • 유숙경;서일교;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.207-214
    • /
    • 2000
  • In this paper, a study of the effenctiveness and convergency of five damage measures for structural damage detection of 2-dimensional truss structure using the extended Kalman filtering algorithm is presented. These damage measures are associated with the change in mode shape and displacement due to structural damage. Damage measures contain the change in natural frequency, mode shape, curvature of mode shape, displacement of static force and curvature of displacement of static force. The effectiveness and convergency of these damage measures by using extended Kalman filtering algorithm are demonstrated with the numerical examples.

  • PDF

Using frequency response function and wave propagation for locating damage in plates

  • Quek, Ser-Tong;Tua, Puat-Siong
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.343-365
    • /
    • 2008
  • In this study, the frequency domain method which utilizes the evaluation of changes in the structural mode shape is adopted to identify regions which contain localized damages. Frequency response function (FRF) values corresponding to the modal frequency, analogous to the mode shape coefficients, are used since change in natural frequency of the system is usually insignificant for localized damage. This method requires only few sensors to obtain the dynamic response of the structure at specific locations to determine the FRF via fast-Fourier transform (FFT). Numerical examples of an aluminum plate, which includes damages of varying severity, locations and combinations of multiple locations, are presented to demonstrate the feasibility of the method. An experimental verification of the method is also done using an aluminum plate with two different degrees of damage, namely a half-through notch and a through notch. The inconsistency in attaining the FRF values for practical applications due to varying impact load may be overcome via statistical averaging, although large variations in the loading in terms of the contact duration should still be avoided. Nonetheless, this method needs special attention when the damages induce notable changes in the modal frequency, such as when the damages are of high severity or cover more extensive area or near the boundary where the support condition is modified. This is largely due to the significant decrease in the frequency term compared to the increase in the vibration amplitude. For practical reasons such as the use of limited number of sensors and to facilitate automation, extending the resolution of this method of identification may not be efficient. Hence, methods based on wave propagation can be employed as a complement on the isolated region to provide an accurate localization as well as to trace the geometry of the damage.

Damage Location Detection of Shear Building Structures Using Mode Shape (모드형상을 이용한 전단형 건물의 손상 위치 추정)

  • Yoo, Suk Hyeong;Lee, Hong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 2013
  • Damage location and extent could be detected by the inverse analysis on dynamic response of the damaged structure. In general, detection of damage location is possible by the observation of the mode shape difference between undamaged and damaged structure and assessment of stiffness reduction is possible by the observation of the natural frequency difference of them. The study on damage detection by the dynamic response in civil structures is reported enough and in practical use, but in building structures it is reported seldom due to several problems. The purpose of this study is to present the damage detection method on shear building structures by mode shape. The damage location index using 1st mode shape is observed theoretically to find out damage location. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. Finally the shaking table test on 3 story shear building is performed for the examination of the damage detection method. In shaking table results, as the story stiffness decrease by 25% the 1st mode frequency increase by 12%, and the damage location index represents minus at damaged story.

An Study on Vibration Characteristics of Automobile Al-alloy Wheel (자동차 알루미늄 합금 휠의 진동특성에 관한 연구)

  • Kim Byoung-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.122-127
    • /
    • 2005
  • The styling of automobile wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The vibration characteristics of a automobile wheel play an important role to judge a ride comfort and quality for a automobile. In this paper, the vibration characteristics of a Al-alloy and steel wheel for automobile are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.

An Experimental Study on Vibration Characteristics of AI-alloy Wheel for Passenger Car (자동차용 알루미늄 합금 휠의 진동특성에 관한 실험적 연구)

  • Kim, Byoung-Sam;Chi, Chang-Hun;Mun, Sang-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.623-628
    • /
    • 2001
  • The styling of passenger car wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The Vibration characteristics of a passenger car wheel play an important role to judge a ride comfortability and quality for a passenger car. In this paper, the vibration characteristics of a AI-alloy and steel wheel for passenger car are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.

  • PDF

Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion (병진 가속도 운동을 하는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.349-354
    • /
    • 2001
  • A structure which is accelerated in the chordwise direction induces variation of the bending stiffness due to inertia force. Thus, the characteristic of natural vibration is also changed. This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. The dependence of natural frequencies and modes on the acceleration changes of the plate is investigated. Particularly, a natural frequency loci veering is observed and discussed in the present study.

  • PDF