• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.029 seconds

A Study on the Behavior Characteristics of a New-Type FRP-Concrete Composite Deck (신개념 FRP-콘크리트 합성 바닥판의 거동 특성 고찰)

  • Cho Keunhee;Chin Won Jong;Kim Sung Tae;Cho Jeong-Rae;Kim Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.746-749
    • /
    • 2004
  • A new-type of FRP-concrete composite bridge deck system is proposed and its behaviors are experimentally studied. The new-typedeck consists of FRP as a permanent form and main tension resisting member and concrete as a compression resisting member. A suitable bonding method such as silica coating is applied to the interface between FRP and concrete to ensure composite behavior. The proposed deck system uses the box-shape FRP member, while a typical FRP-concrete composite deck uses the I-shape FRP member. Theproposed deck system has inherent advantages of a FRP-concrete composite deck like corrosion free and easy construction. The new-type deck shows the equal performances compared to a previous one, and has the advantage of reducing self-weight. In this study, the static tests on 3-span FRP-concrete decks in full scale are carried out, so that load-displacement relation, stress distribution, failure mode and design criteria are analyzed. The test results show that the deflection design criterion (L/800, L: span length) is satisfied at the service load state. No concrete tensile crack occurs in the negative moment region above the main girder, regardless of no tensile reinforcement at upper concrete portion.

  • PDF

Centrifuge Model Experiments and Numerical Analyses of the Behavior of Excavated Marine Clay Slope (해성점토 굴착사면의 거동에 관한 원심모형실험 및 수치해석)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.49-56
    • /
    • 2006
  • In this thesis, centrifuge model experiments and numerical analyses were carried out to investigate the behavior of an excavated slope in soft clay ground. Centrifuge model tests were performed with various slopes for the excavated ground, such as 1:1.5 and 1:2. Pore pressuresthe model ground were measured to find their effects on the stability of the excavated slope. These experiments showed that the model with 1:2.5 maintained its stability within a short period of time and failed gradually. Therefore, anexcavated slope of soft soil with this slope might maintain stable conditions within a certain time. The mode1 with a 1:3 slope was observed to maintain a very stable condition, showing insignificant deformation in the ground after being excavated. Numerical analyses with PLAXIS, a commerciallyavailable software implemented with the finite element numerical technique, were performed to find the pore pressure distribution within the ground mass and the deformation of the soil. From the results of numerical analysis, a negative pore pressure was developed after the excavation and thus the stability of the slope was maintained. The safety factor for slope failure was found to decrease with time because of the dissipation of negative pore pressure with time.

A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam (티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구)

  • 진종태;손인수;윤한익
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper a dynamic behavior of a simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect of the velocity of the fluid on the mid-span deflection appears more greatly.

Transformation Behavior on Heat Treatment Condition in Grain-Refined Cu-Zn-Al Shape Memory Alloy (결정립 미세화된 Cu-Zn-Al 형상기억합금의 열처리 조건에 따른 변태거동)

  • Kang, J.W.;Jang, W.Y.;Yang, G.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.34-43
    • /
    • 1991
  • A small amount of misch metal and/or Zr was added as a dopant to 70.5wt----Cu-26wt----Zn-3.5wt----Al shape memory alloy in order to study the effect of grain refinement and heat treatments on the transformation behavior, stabilization of martensite, and shape memory ability. It was found that the addition of misch metal and Zr was very effective for reducing the grain size. The fracture mode has been changed from intergranular brittle fracture to ductile fracture with void formation and coalescence by the addition of misch metal and Zr. Aging of the ${\beta}$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The hysteresis of transformation temperature ${\Delta}T(A_s-M_s)$ has an increasing tendancy by grain refinement. The crystal structure of martensite was identified as monoclinic structure. As the grain size decreased, martensite stabilization more easily occured and the shape, memory ability has been reduced by the grain size refined.

  • PDF

Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures

  • Ventura-Gouveia, A.;Barros, Joaquim A.O.;Azevedo, Alvaro F.M.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.735-755
    • /
    • 2011
  • The capability of a multi-directional fixed smeared crack constitutive model to simulate the flexural/punching failure modes of fiber reinforced concrete (FRC) laminar structures is discussed. The constitutive model is implemented in a computer program based on the finite element method, where the FRC laminar structures were simulated according to the Reissner-Mindlin shell theory. The shell is discretized into layers for the simulation of the membrane, bending and out-of-plane shear nonlinear behavior. A stress-strain softening diagram is proposed to reproduce, after crack initiation, the evolution of the normal crack component. The in-plane shear crack component is obtained using the concept of shear retention factor, defined by a crack-strain dependent law. To capture the punching failure mode, a softening diagram is proposed to simulate the decrease of the out-of-plane shear stress components with the increase of the corresponding shear strain components, after crack initiation. With this relatively simple approach, accurate predictions of the behavior of FRC structures failing in bending and in shear can be obtained. To assess the predictive performance of the model, a punching experimental test of a module of a façade panel fabricated with steel fiber reinforced self-compacting concrete is numerically simulated. The influence of some parameters defining the softening diagrams is discussed.

Experimental and theoretical research on mechanical behavior of innovative composite beams

  • Zhu, Gang;Yang, Yong;Xue, Jianyang;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.313-333
    • /
    • 2013
  • The web-encased steel-concrete composite (WESCC) beam is a new developed steel-concrete composite beam. Experiments of six simply supported WESCC beam specimens were conducted. The effects of the shear-span ratio and steel section type were all investigated on the static behaviors such as failure modes, failure mechanism and bearing capacity. The experimental results denoted that all specimens failed in bending mode and the degree of combination between the bottom armor plate of steel shape and concrete were very well without any evident slippage, which demonstrated that the function of bottom armor plate and web were fully exerted in the WESCC beams. It could be concluded the WESCC beams have high stiffness, high load carrying capacity and advanced ductility. The design methods are proposed which mainly consist the bearing capacity calculation of bending and flexural rigidity. The calculation results of the bearing capacity and deflection which take the shear deflection into account are in agreement with the experimental results. The design methods are useful for design and application of the innovative composite beams.

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.

Experimental studies and numerical analysis of the shear behavior of fin plates to tubular columns at ambient and elevated temperatures

  • Jones, M.H.;Wang, Y.C.
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.179-200
    • /
    • 2008
  • This paper reports the results of a recent experimental study into the behavior of welded fin-plate connections to both hollow and concrete filled tubular (CFT) columns under shear. Experiments have been performed at both ambient and elevated temperatures with the aid of an electric kiln. The observed failure modes include fracture of the fin plate and tearing out of the tube around the welds. By considering the results of previously published research, the current design method for similar connections under purely tensile load, in CIDECT Guide 9, based on a deformation limit of 3% of the tube width is shown to be inadequate when evaluating the ultimate strength of such connections. By comparing the results from the current test program which failed in the fin-plate with Eurocode guidance for failure of a fin-plate alone under shear and bending load it is shown that the column face influences the overall connection strength regardless of failure mode. Concrete in-fill is observed to significantly increase the strength of connections over empty specimens, and circular column specimens were observed to exhibit greater strength than similarly proportioned square columns. A finite element (F.E.) model, developed using ABAQUS, is presented and validated against the experimental results in order that extensive parametric tests may be subsequently performed. When validating the model against elevated temperature tests it was found that using reduction factors suggested in published research for the specific steel grades improved results over applying the generic Eurocode elevated temperature steel strength reduction factors.

A Study on Dietary Pattern of Pre-school Children (취학전(就學前) 아동(兒童)의 식사행동(食事行動)에 관한 연구(硏究))

  • Lim, Hyeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.10 no.4
    • /
    • pp.19-23
    • /
    • 1977
  • It is said that a mode of dietary behavior changes together with socioeconomic and cultural transformation. Formation of dietary habit of pre-school children influences upon direction of this changes, specially. So, this study was planned to analyst the dietary pattern of pre-school children. A survey was carried out for 3 days of 28 pre-school children with a mean age of 4 years and 3 months. Each child's matter wrote dietary pattern and kinds of food as staple, subsidiary and snack. The results showed that; (1) the average meal frequency a day was 3.1 and interval between meal was 5.1 hours (for breakfast to lunch & lunch to supper) and 12.6 hours (for supper to breakfast), (2) there were 27 different kinds of foods as staple and cereal products consumed the most among those, and 82 different kinds of foods as subsidiary and KIMCHI products were eaten the most rating, (3) the average snack frequency a day was 5.0. There were 76 different kinds of foods as snack, among them cold drink was the best. The present observation suggested that pre-school children had a tendency to take meat regularly, but snack very irregularly, and kinds of foods taken as staple, subsidiary and snack didn't keep the nutritional balance. Parent's concern about dietary behavior of their children is demanded more than ever.

  • PDF

Effects of Mo additions on the room-temperature deformation behavior of polysynthetically twinned (PST) crystals of TiAl

  • O, Myeong-Hun;Kim, Min-Cheol;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 1995
  • The effects of Mo additions on the microstructure and the room temperature deformation behavior of polysynthetically twinned (PST) crystals of TiAl were studied in order to get a basic conception for alloying additions on the two-phase TiAl compounds with the lamellar structure. It was found that the Mo additions in TiAl PST crystals increase both the yield stress and tensile elongation to fracture but the increase in yield stress deppend on the angle $\Phi$at which the lamellar boundaries lie from the loading axis. The large difference in yield stress between specimens deformed parallel($\Phi = 0^\circ$)or perpendicular($\Phi = 90^\circ$) to the loading axis and those deformed in intermediate orientations could be plained by the difference in Mo content between the TiAl and the $$Ti_{3}Al$ phases. It was also found that the Mo-doped specimens with intermediate orientation fail by cracking zigzag across to the lamellar boundaris, which is the same fracture mode as that of binary specimens with intermediate orientations tested in vacuum This suggests that Mo atoms are thought to play a role to reduce the environmental embrittlement of binary PST crystals, resulting in increasing the tensile ductility.

  • PDF