• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.029 seconds

Flexural Rehabilitation Performance of Reinforced Concrete Beams Strengthened with Carbon Fiber Laminate (탄소섬유판을 이용한 철근콘크리트 보의 휨 보강 성능)

  • Chung, Lan;Kim, Sung-Chul;Lee, Hee-Kyoung;Yoo, Seong-Hoon;Kim, Joong-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.121-128
    • /
    • 1999
  • In this study, the behavior of R/C beams strengthened with carbon fiber laminate (CFL) is analyzed from the test results. CFL is attractive for this application due to its good tensile strength and low weight. Test parameters are the width and the thickness of CFL and repair of damaged specimen. The failure mode and ultimate load are analyzed from these measured data. Test results show that the peak load of specimens strengthened with CFL is increased to 1.27~2.04 times that of non-rehabilitation specimen. The wider lap width, larger amount of CFL, the larger strength is obtained. But the ductile behavior of the rehabilitated specimens is inversely proportional to the CFL thickness.

  • PDF

Microwave Heating and Pre-sintering of Copper Powder Metal Compacts in Separated Electric and Magnetic Fields

  • Zimmerman, Darin T.;Johnson, Earnie J.;Ma, JunKun;Miskovsky, Nicholas M.;Weisel, Gary J.;Weiss, Brock L.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.266-267
    • /
    • 2006
  • We present a systematic study of the heating and pre-sintering behavior of porous copper powder metal compacts. We employ a TE102 single mode microwave system to position the samples in the separated electric field (E) or magnetic field (H) anti-node of the cavity. We observe significant differences in the heating, pre-sintering, and microstructure evolution of the samples due to the individual fields. We note that sample history (whether heated first in the E-field or H-field) greatly effects a difference in heating trends and subsequent heating behavior and does not appear to be solely a thermal process.

  • PDF

Real-time Tool Condition Monitoring for Machining Operations

  • Kim, Yon-Soo
    • IE interfaces
    • /
    • v.7 no.3
    • /
    • pp.155-168
    • /
    • 1994
  • In computer integrated manufacturing environment, tool management plays an important role in controlling tool performance for machining operations. Knowledge of tool behavior during the cutting process and effective tool-behavior prediction contribute to controlling machine costs by avioding production delays and off-target parts due to tool failure. The purpose of this paper is to review and develop the tool condition monitoring scheme for drilling operation to assure a fast corrective response to minimize the damage if tool failures occur. If one desires to maximize system through-put and product quality as well as tooling resources, within an economic environment, real-time tool sensing system and information processing system can be coupled to provide the necessary information for the effective tool management. The example is demonstrated as to drilling operation when the aluminum composites are drilled with carbide-tipped HSS drill bits. The example above is limited to the situation that the tool failure mode of drill bits is wear.

  • PDF

Friction and Wear of Nano-Sized Silica Filled Epoxy Composites

  • Kim, Jae-Dong;Kim, Yeong-Sik;Kim, Hyung-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-179
    • /
    • 2014
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the specific wear rate under the various applied load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and followed by scanning electron microscope observations. The presence of silica filler in epoxy composites was demonstrated significant influence on the friction and wear behavior of epoxy nanocomposites. With the incorporation of silica filler into the epoxy matrix, reduction of the coefficient of friction and specific wear rate were identified. Wear mechanism was discussed by analyzing the worn surface by scanning electron microscope as well.

Vibration and Damping Analysis of Cross-ply Plate Strip Including Layer-wise In-plane Displacements (면내 변위의 변화를 고려한 Cross-ply 적층판의 진동 및 감쇠해석)

  • Koo, Kyo-Nam;Lee, in
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.305-315
    • /
    • 1992
  • In order to investigate the effects of layer-wise in-plane displacements on vibration and damping characteristics of composite laminated plates, the finite element method based on the generalized laminated plate theory(GLPT) has been formulated. Specific damping capacity of each mode was obtained by modal strain energy method. To see the effect of transverse shear on deformation, the strain energy of stress components was computed. The accuracy of this study was examined for the cylindrical bending vibration of cross-ply plate strip. The results were very accurate compared with 3-D solutions. The numerical results show that through-thickness variation of in-plane displacements has not so much influence on the natural frequency, but has a great influence on the damping of composite plates, especially on the damping of thick composite plates since the damping is affected by local behavior while the natural frequency is affected by global behavior.

  • PDF

Dynamic Behavior of Spring Supported Cantilever Beam with Crack and Moving Mass (크랙과 이동질량을 가진 탄성지지 외팔보의 진동특성)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.534-537
    • /
    • 2004
  • In this paper, a dynamic behavior of spring supported cantilever beam with a crack and a moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's eauation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in the first mode of fracture. As the depth of the crack is increased the tip displacement of the cantilever beam is increased.

  • PDF

The Creep-Rupture Life of Al Alloy (Al합금의 크리프 파단수명에 관한 연구)

  • Bae, Choon-Ik;Chin, Do-Hun
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • Technological mode progress demands the use of materials at high temperature and pressure. Constant load creep tests have been carried out over the range of stresses at high temperatures. One of the most critical factors in considering such applications as the most critical one is the creep behavior. In order to investigate the creep behavior in this study, the stress exponents during creep were determined over the temperature range of $275^{\circ}C$ to $325^{\circ}C$ and the stress range of 36MPa to 72MPa. The applicability of modified Monkman-Grant relationship was also discussed.

CHARACTERIZATION OF MAGNETIZATION BEHAVIOR IN Co/Pd PERPENDICULAR ANISOTROPIC MULTILAYERS

  • Oh, Hoon-Sang;Joo, Seung-Ki
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.655-658
    • /
    • 1995
  • Magnetization behavior of sputter-deposited Co/Pd multilayers were characterized, and it has been found that even when the multilayers are sputtered at low pressure (10 mTorr), the coercivity of the multilayers can be increased to large extent without noticeable change of saturation magnetization by increasing the deposition pressure of Pd underlayer. It turned out that the surface topology of Pd underlayer gets rough as deposition pressure increases, which consequently affects the magnetization reversal mode of Co/Pd multilayers from domain wall motion to magnetic spin rotation. The enhancement of coercivity is attributed to the domain wall pinning effect which is comected with the surface roughness of Pd underlayer on which Co/Pd multilayers grow.

  • PDF

Viscous damping effects on the seismic elastic response of tunnels in three sites

  • Sun, Qiangqiang;Bo, Jingshan;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.639-650
    • /
    • 2019
  • Time-domain commercial codes are widely used to evaluate the seismic behavior of tunnels. Those tools offer a good insight into the performance and the failure mechanism of tunnels under earthquake loading. Viscous damping is generally employed in the dynamic analysis to consider damping at very small strains in some cases, and the Rayleigh damping is commonly used one. Many procedures to obtain the damping parameters have been proposed but they are seldom discussed. This paper illustrates the influence of the Rayleigh damping formulation on the tunnel visco-elastic behavior under earthquake. Four Rayleigh damping determination procedures and three soil shear velocity profiles are accounted for. The results show significant differences in the free-field and in the tunnel response caused by different procedures. The difference is somewhat decreased when the soil site fundamental frequency is increased. The conventional method which consists of using solely the first soil natural mode to determine the viscous damping parameters may lead to an unsafe seismic design of the tunnel. In general, using five times site fundamental frequency to obtain the damping formulation can provide relatively conservative results.

Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete

  • Yan, Lan-Lan;Liang, Jiong-Feng;Zhao, Yan-gang
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2019
  • The use of recycled aggregate concrete for the purpose of environmental and resource conservation has gained increasing interest in construction engineering. Nevertheless, few studies have reported on the bonding performance of the bars in recycled aggregate concrete after exposed to high temperatures. In this paper, 72 pull-out specimens and 36 cubic specimens with different recycled coarse aggregate content (i.e., 0%, 50%,100%) were cast to evaluate the bond behavior between recycled aggregate concrete and steel bar after various temperatures ($20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$). The results show that the recycled aggregate concrete pull-out specimens exhibited similar bond stress-slip curves at both ambient and high temperature. The bond strength declined gradually with the increase of the temperature. On the basis of a regression analysis of the experimental data, a revised bond strength mode and peak slip ratios relationship model were proposed to predict the post-heating bond-slip behavior between recycled aggregate concrete and steel bar.