• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.027 seconds

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

Analysis of the Boron Concentration Behavior Using LTC code During Power Maneuvering

  • Kwon, Jong-Soo;Chi, Sung-Goo;Park, Hae-Yun;Park, Seong-Hoon;Lee, Gi-Won
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.413-418
    • /
    • 1996
  • The main purpose of this paper is to develop the modified LTC code for accurate analysis of the boron concentration behavior of all components in the Nuclear Steam Supply System (NSSS). This is achieved by adapting a multi-cell mad to the existing Long Term Cooling (LTC) code. To verify the modified LTC, the simulated results were compared with the actual test results measured during YGN 4 initial criticality test. It was shown that the simulated results of this modified LTC were in good agreement with the actual test results. Also, the boron concentration behavior analysis were performed using the modified LTC code for both direct and indirect dilution/boration nude using YGN 3,4 design data. This modified LTC code can provide a valuable information in predicting boron concentration behavior during power maneuvering such as startup operation, shutdown operation and load follow operation. It is expected that the modified LTC can be applied to both on-line and off-line mode using Plant Computer System(PCS).

  • PDF

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Ultimate strength behavior of steel plate-concrete composite slabs: An experimental and theoretical study

  • Wu, Lili;Wang, Hui;Lin, Zhibin
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.741-759
    • /
    • 2020
  • Steel plate-concrete composite slabs provide attractive features, such as more effective loading transfer, and more cost-effective stay-in-place forms, thereby enabling engineers to design more high-performance light structures. Although significant studies in the literatures have been directed toward designing and implementing the steel plate-concrete composite beams, there are limited data available for understanding of the composite slabs. To fill this gap, nine the composite slabs with different variables in this study were tested to unveil the impacts of the critical factors on the ultimate strength behavior. The key information of the findings included sample failure modes, crack pattern, and ultimate strength behavior of the composite slabs under either four-point or three-point loading. Test results showed that the failure modes varied from delamination to shear failures under different design factors. Particularly, the shear stud spacing and thicknesses of the concrete slabs significantly affected their ultimate load-carrying capacities. Moreover, an analytical model of the composite slabs was derived for determining their ultimate load-carrying capacity and was well verified by the experimental data. Further extensive parametric study using the proposed analytical methods was conducted for a more comprehensive investigation of those critical factors in their performance. These findings are expected to help engineers to better understand the structural behavior of the steel plate-concrete composite slabs and to ensure reliability of design and performance throughout their service life.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Cyclic behavior of FRP - crumb rubber concrete - steel double skin tubular columns and beams

  • Li, Danda;Hassanli, Reza;Su, Yue;Zhuge, Yan;Ma, Xing
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.649-661
    • /
    • 2021
  • This paper presents experimental and analytical studies to understand the behavior of crumb rubber concrete (CRC)-filled fiber reinforced polymer (FRP) and steel tube double skin column (DSC) and beam (DSB) members under cyclic loading. The main test variable was the percentage of rubber which ranged from 0 to 40%. For column members, different heights corresponding to different aspect ratios were examined to understand the to understand the effect of DSCs' slenderness on the cyclic response of the columns. the. The behavior of the specimens in terms of failure mode, strain development, energy dissipation, load-displacement response were presented and compared. The ability of the current provisions of the Australian codes to predict the capacity of such double skin members was also evaluated based on the test results. This study concluded that the reduction in the concrete strength was more severe at the material level compared to structural level. Also, as the load changed from axial compression in columns to pure moment in beams the negative effect of rubber percentage on the strength became less significant.

Experimental and numerical study of a steel plate-based damper for improving the behavior of concentrically braced frames

  • Denise-Penelope N. Kontoni;Ali Ghamari;Chanachai Thongchom
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.185-201
    • /
    • 2023
  • Despite the high lateral stiffness and strength of the Concentrically Braced Frame (CBF), due to the buckling of its diagonal members, it is not a suitable system in high seismic regions. Among the offered methods to overcome the shortcoming, utilizing a metallic damper is considered as an appropriate idea to enhance the behavior of Concentrically Braced Frames (CBFs). Therefore, in this paper, an innovative steel damper is proposed, which is investigated experimentally and numerically. Moreover, a parametrical study was carried out to evaluate the effect of the mechanism (shear, shear-flexural, and flexural) considering buckling mode (elastic, inelastic, and plastic) on the behavior of the damper. Besides, the necessary formulas based on the parametrical study were presented to predict the behavior of the damper that they showed good agreement with finite element (FE) results. Both experimental and numerical results confirmed that dampers with the shear mechanism in all buckling modes have a better performance than other dampers. Accordingly, the FE results indicated that the shear damper has greater ultimate strength than the flexural damper by 32%, 31%, and 56%, respectively, for plates with elastic, inelastic, and plastic buckling modes. Also, the shear damper has a greater stiffness than the flexural damper by 43%, 26%, and 53%, respectively, for dampers with elastic, inelastic, and plastic buckling modes.

Behavior of short columns constructed using engineered cementitious composites under seismic loads

  • Syed Humayun Basha;Xiaoqin Lian;Wei Hou;Pandeng Zheng;ZiXiong Guo
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.565-582
    • /
    • 2023
  • The present research reports the application of engineered cementitious composites (ECC) as an alternative to conventional concrete to improve the seismic behavior of short columns. Experimental and finite element investigation was conducted by testing five reinforced engineered cementitious composite (RECC) concrete columns (half-scale specimens) and one control reinforced concrete (RC) specimen for different shear-span and transverse reinforcement ratios under cyclic lateral loads. RECC specimens with higher shear-span and transverse reinforcement ratios demonstrated a significant effect on the column lateral load behavior by improving ductility (>5), energy dissipation capacity (1.2 to 4.1 times RC specimen), gradual strength degradation (ultimate drift >3.4%), and altering the failure mode. The self-confinement effect of ECC fibers maintained the integrity in the post-peak region and reserved the transmission of stress through fibers without noticeable degradation in strength. Finite element modeling of RECC specimens under monotonic incremental loads was carried out by adopting simplified constitutive material models. It was apprehended that the model simulated the global response (strength and stiffness) and damage crack patterns reasonably well.

Mechanical behavior and numerical modelling of steel fiber reinforced concrete under triaxial compression

  • Bu Jingwu;Xu Huiying;Wu Xinyu;Chen Xudong;Xu Bo
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.137-149
    • /
    • 2024
  • In order to study the triaxial mechanical behavior of steel fiber reinforced high performance concrete (SFRHPC), the standard triaxial compression tests with four different confining pressures are performed on the cylindrical specimens. Three different steel fiber volumes (0, 1% and 2%) are added in the specimens with diameter of 50 mm and height of 100 mm. Test results show that the triaxial compressive strength and peak strain increase with the increasing of fiber content at the same confining pressure. At the same steel fiber content, the triaxial compressive strength and peak strain increases with the confining pressure. The compressive strength growth rate declines as the confining pressure and steel fiber content increases. Longitudinal cracks are dominant in specimens with or without steel fiber under uniaxial compression loading. While with the confining pressure increases, diagonal crack due to shear is obvious. The Mohr-Coulomb criterion is illustrated can be used to describe the failure behavior, and the cohesive force increases as steel fiber content increases. Finally, the numerical model is built by using the PFC3D software. In the numerical model a index is introduced to reflect the effect of steel fiber content on the triaxial compressive behavior. The simulating stress-strain curve and failure mode of SFRHPC are agree well with the experimental results.