• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.031 seconds

Useful Guide to Solve Herschel-Bulkley Model in a Flow Mode Damper (유동 모드 댐퍼에서의 Herschel-Bulkley 모델의 유용한 해법)

  • 이덕영;박성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.784-787
    • /
    • 2003
  • Electrorheological(ER) and magnetorheological(MR) fluid-based dampers are typically analyzed using Bingham-plastic shear model under quasi-steady fully developed flow conditions. A Herschel-Bulkley constitutive shear flow relationship is that the linear shear stress vs. strain rate behavior of Bingham model is replaced by a shear stress that is assumed to be proportional to a power law of shear rate. This power is called the flow behavior index. Depending on the value of the flow behavior index number, varying degrees of post-yield shear thickening or thinning behavior can be analyzed. But it is not practical to analyze the damping force in a flow mode damper using Herschel-Bulkley model because it is needed to solve a polynomial equation. A useful guide is suggested to analyze the damping force in a damper using the Herschel-Bulkley model.

  • PDF

A Study on the Behavior of Droplets Colliding with Parallel Wires (평행 와이어와 충돌하는 액적 거동에 관한 연구)

  • Na, J.K.;Noh, D.H.;Jung, Y.J.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.149-156
    • /
    • 2021
  • In this study, the behavior of the droplet colliding with parallel wires was analyzed by time-delay photography. The impact behavior modes and the critical capture speed were analyzed by changing fluids, the droplet velocity, the wire diameter and the distance between wires. Seven typical modes of impacting droplet on parallel wires were observed. The tendency of mode change was generally similar when the wire diameter was changed, but the increase of the wire diameter caused the increase of the droplet velocity at which the mode changed. The modes at the highest droplet velocity were the splitting mode when the wires were closest, the passing and splitting mode in the middle, and the passing mode when the wires were farthest apart. The critical capture speed increased as the wire diameter increased and the distance between wires decreased. The ethanol droplet showed the lowest critical capture speed.

Ductile Fracture Behavior of AS4P Under Mixed Mode (I/II) Loading

  • Oh, Dong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.476-484
    • /
    • 2002
  • The aim of this study is to investigate the ductile fracture behavior under mixed mode (I/II) loading using SA533B pressure vessel steel. Anti-symmetric 4-point (AS4P) bending tests were performed to obtain the J-R curves under two different mixed mode (I/II) loadings. In addition, finite element analysis using Rousselier Ductile Damage Theory was carried out to predict the J-R curves under mixed mode (I/II) loadings. In conclusions, the J-R curves under. Mixed Mode (I/II) loading were located between those of Mode I and Mode II loading. When the mixity of mixed mode (I/II) loading was high, the J-R curve of mixed mode (I/II) loading approached that of pure mode I loading after some amount of crack propagation. In contrast with the above fact, if the mixity was low, the J-R curve took after that of pure mode II loading. Finally, it was found that the predicted J-R curves made a good agreement with the test data through the tuning procedures of $\beta$ values at the different mixed mode (I/II) loading.

Fatigue Crack Growth Behavior for Rail Steel under Mixed Mode Variable Amplitude Loading (혼합모드 변동하중하에서 레일강의 피로균열 진전거동)

  • Sohn, Kyoung-Ju;Seo, Young-Bum;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.261-266
    • /
    • 2003
  • The growth behavior of the transverse crack, which was one of the most dangerous damages of rail defects, was investigated under mode I and mixed mode loading in rail steel. In the case of variable amplitude loading, the fatigue crack growth behavior was discussed using characteristic stress intensity factor ranges ${\Delta}_{rms}$. In addition, characteristic comparative stress intensity factor ranges ${\Delta}_{V,rms}$ was proposed to evaluate the quantitative effects of the variable amplitude under mixed mode loading. As a result, crack growth rate under variable amplitude loading was faster than that under constant amplitude loading.

  • PDF

Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement (측방변형지반속 매설관 주변지반의 파괴모드)

  • Hong, Won-Pyo;Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

The Effect of Behavior Fatigue Crack Propagation on 2-Axle Load Frequency (2축 하중주파수가 피로균열진전거동에 미치는 영향)

  • Kim, Sang-Hee;Li, Jing-Hua;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • The stress state acting on mechanical parts and structures is generally mixed stress. This complex stress state, which is subject to changes in the environment, will produce many. Cars running on roads with different road conditions will subject the automotive parts to combined stress state. In the x direction and the y direction, a different amplitude and frequency of the fatigue load can be present. However, the load amplitude for Mode I and Mode II in a 2-axis fatigue test is limited to a constant ratio; the load frequency is always the same for any mode. In this paper, it is verified how the variation of the load frequency for mode II affects the behavior of fatigue crack propagation under mixed mode.

A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method (유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구)

  • 정석주
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF

Assessment for Propagation Behavior and Fracture Surface of Mixed-mode Fatigue Crack by Fracture Surface-Roughness Induced Crack Closure (파면거칠기 유도 균열닫힘에 의한 혼합모드 피로균열의 전파거동 및 파면에 대한 평가)

  • Seo, Ki-Jeong;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.432-440
    • /
    • 2007
  • In this study, we have investigated the closure behavior of fatigue cracks in SAPH440 steel plates under a mixed-mode I+II loading. A crack image capturing system as a direct measuring method was used to measure the closure levels at a crack tip. The crack closure levels in the fluctuation and stable sections were increased with the increase of the mode mixture ratio. The mode mixture ratio independent fatigue crack propagation rates equation was calculated by considering mixed-mode crack closure levels. The equation was examined according to the application method of crack opening ratio. The fracture surface analysis by C-scan method was also performed in order to investigate the closure mechanism and propagation mode of crack under the mixed-mode I+II loading. The crack closure under the mixed mode I+II is confirmed as a surface roughness closure by the quantitative analysis of fracture surface using the proposed surface roughness parameter.

Development and Application of Mode II Fracture Toughness Test Method Using Rock Core Specimen (시추코어를 이용한 암석의 mode II 파괴인성 시험법 개발과 적용)

  • Jung, Yong-Bok;Park, Eui-Seob;Kim, Hyunwoo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.396-408
    • /
    • 2016
  • Rock fracture mechanics has been widely applied to various fields of rock and civil engineering. But most researches covered mode I behavior, though mode II behavior is dominant in rock engineering. Until now, there is only one ISRM suggested method for mode II toughness of rock. A new SCC (Short Core in Compression) mode II toughness test method was developed considering 1) application of confining pressure, 2) easiness of notch creation, 3) utilization of existing equipment, 4) simple test procedure. The stress intensity factors were determined by 3D finite element method considering line and distributed loading conditions. The tests with granite specimens were carried out using MTS 815 rock test system with a loading rate of 0.002 mm/s. The mean value of mode II fracture toughness of granite showed $2.33MPa{\sqrt{m}}$. Mode I toughness of the same granite was $1.12MPa{\sqrt{m}}$, determined by Brazilian disk test and $K_{IIC}/K_{IC}=2.08$. The smooth fracture surface with rock powder formation also supported mode II behavior of SCC method. The SCC method can be used for the determination of mode II fracture toughness of rocks based on the current results.