• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.028 seconds

Performance of hybrid beam-column joint cast with high strength concrete

  • Al-Osta, M.A.;Al-Khatib, A.M.;Baluch, M.H.;Azad, A.K.;Rahman, M.K.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.603-617
    • /
    • 2017
  • This paper presents investigation into the behavior of beam-column joints, with the joint region concrete being replaced by steel fiber reinforced concrete (SFRC) and by ultra-high performance concrete (UHPC). A total of ten beam-column joint specimens (BCJ) were tested experimentally to failure under monotonic and cyclic loading, with the beam section being subjected to flexural loading and the column to combined flexural and axial loading. The joint region essentially transferred shear and axial stresses as received from the column. Steel fiber reinforced concrete (SFRC) and ultra-high performance concrete (UHPC) were used as an innovative construction and/or strengthening scheme for some of the BCJ specimens. The reinforced concrete specimens were reinforced with longitudinal steel rebar, 18 mm, and some specimens were reinforced with an additional two ties in the joint region. The results showed that using SFRC and UHPC as a replacement concrete for the BCJ improved the joint shear strength and the load carrying capacity of the hybrid specimens. The mode of failure was also converted from a non-desirable joint shear failure to a preferred beam flexural failure. The effect of the ties in the SFRC and UHPC joint regions could not be observed due to the beam flexural failure. Several models were used in estimating the joint shear strength for different BCJ specimens. The results showed that the existing models yielded wide-ranging values. A new concept to take into account the influence of column axial load on the shear strength of beam-column joints is also presented, which demonstrates that the recommended values for concrete tensile strength for determination of joint shear strength need to be amended for joints subject to moderate to high axial loads. Furthermore, finite element model (FEM) simulation to predict the behaviour of the hybrid BCJ specimens was also carried out in an ABAQUS environment. The result of the FEM modelling showed good agreement with experimental results.

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Properties of Au Clusters Supported on $TiO_2$ Studied by XPS, ISS, AES, and TPD (XPS, ISS, AES, TPD를 이용한 $TiO_2$ 위에 지지된 Au 클러스터의 특성 연구)

  • Kim, Dae Young
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.607-617
    • /
    • 1998
  • Au was dosed on $TiO_2(001)$ film grown epitaxially on Mo(100) surface in about 90 ${\AA}$ thickness. The growth mode of Au, thermal behavior and stability of the Au clusters, and the binding energy shift of Au 4f with the change in the amount of Au loading were studied by Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) spectroscopy, Ion Scattering Spectroscopy (ISS), and X-ray Photoelectron Spectroscopy (XPS). Au grows three dimensionally on $TiO_2(001)$ film and the average size of Au clusters prepared at low temperature is smaller than those at higher temperature and the size increases with temperature irreversibly. Au clusters on $TiO_2(001)/Mo(100)$ start evaporation at 1000 K. TPD spectra of Au show very asymmetric peaks with the same leading edges irrespective of the amount of Au loading. The temperature at the peak maximum increases with the amount of Au. The desorption energy of Au obtained from the leading edge analysis of the TPD spectra is about 50 kcal/mol. The initial sticking coefficient of Au on $TiO_2(001)$ is constant in the temperature range of 200-600 K. The binding energy of Au 4f for the Au loaded on the film less than 2.0 MLE shifts to higher energy compared with the bulk Au. The shift is +0.3 eV at 0.1 MLE Au amount.

  • PDF

Nonlinear Seismic Analysis of a Three-dimensional Unsymmetrical Reinforced Concrete Structure (3차원 비대칭 철근콘크리트 구조물의 비선형 지진응답해석)

  • Lim, Hyun-Kyu;Lee, Young-Geun;Kang, Jun Won;Chi, Ho-Seok;Cho, Ho-Hyun;Kim, Moon-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper presents the seismic performance of a geometrically unsymmetrical reinforced concrete building considering torsional effect and material nonlinearity of concrete and steel. The reinforced concrete building is a structure for seismic performance evaluation in the SMART-2013 international benchmark program. Nonlinear constitutive models for concrete and steel were constructed, and their numerical performance was demonstrated by various local tests. Modal analysis showed that the first three natural frequencies and mode shapes were close to the experimental results from the SMART-2013 program. In the time history analysis for low-intensity seismic loadings, displacement and acceleration responses at sampling points were similar to the experimental results. In the end, nonlinear time history analysis was conducted for Northridge earthquake to predict the behavior of the reinforced concrete structure under high-intensity seismic loadings.

Oral tissue response to soft tissue expanders prior to bone augmentation: in vitro analysis and histological study in dogs

  • Yoo, Jung Min;Amara, Heithem Ben;Kim, Min Kyoung;Song, Ju Dong;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.3
    • /
    • pp.152-163
    • /
    • 2018
  • Purpose: To determine whether the swelling and mechanical properties of osmotic self-inflating expanders allow or not the induction of intraoral soft tissue expansion in dogs. Methods: Three different volumes (0.15, 0.25, and 0.42 mL; referred to respectively as the S, M, and L groups) of soft tissue expanders (STEs) consisting of a hydrogel core coated with a silicone-perforated membrane were investigated in vitro to assess their swelling behavior (volume swelling ratio) and mechanical properties (tensile strength, tensile strain). For in vivo investigations, the STEs were subperiosteally inserted for 4 weeks in dogs (n=5). Soft tissue expansion was clinically monitored. Histological analyses included the examination of alveolar bone underneath the expanders and thickness measurements of the surrounding fibrous capsule. Results: The volume swelling ratio of all STEs did not exceed 5.2. In tensile mode, the highest mean strain was registered for the L group ($98.03{\pm}0.3g/cm$), whereas the lowest mean value was obtained in the S group ($81.3{\pm}0.1g/cm$), which was a statistically significant difference (P<0.05). In addition, the S and L groups were significantly different in terms of tensile strength ($1.5{\pm}0.1g/cm$ for the S group and $2.2{\pm}0.1g/cm$ for the L group, P<0.05). Clinical monitoring showed successful dilatation of the soft tissues without signs of inflammation up to 28 days. The STEs remained volumetrically stable, with a mean diameter in vivo of 6.98 mm, close to the in vitro post-expansion findings (6.69 mm). Significant histological effects included highly vascularized collagen-rich fibrous encapsulation of the STEs, with a mean thickness of $0.67{\pm}0.12mm$. The bone reaction consisted of resorption underneath the STEs, while apposition was observed at their edges. Conclusions: The swelling and mechanical properties of the STEs enabled clinically successful soft tissue expansion. A tissue reaction consisting of fibrous capsule formation and bone loss were the main histological events.

Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111) (n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성)

  • Kim Hyun-Deok;Park Kyeong-Won;Lee Jong-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1663-1670
    • /
    • 2006
  • Single crystal Fe thin films were grown directly onto n-Si(111) substrates by pulsed electrodeposition. Cyclic Voltammogram(CV) indicated that the $Fe^{2+}/n-Si(111)$ interface shows a good diode behavior by forming a Schottky barrier. From Mott-Schottky (MS) relation, it is found that the flat-band potential of n-Si(111) substrate and equilibrium redox potential of $Fet^{2+}$ ions are -0.526V and -0.316V, respectively. The nucleation and growth kinetics at the initial reaction stages of Fe/n-Si(111) substraste was studied by current transients. Current transients measurements have indicated that the deposition process starts via instantaneous nucleation and 3D diffusion limited growth. After the more deposition, the deposition flux of Fe ions was saturated with increase of deposition time. from the as-deposited sample obtained using the potential pulse of 1.4V and 300Hz, it is found that Fe nuclei grows to three dimensional(3D) islands with the average size of about 100nm in early deposition stages. As the deposition time increases, the sizes of Fe nuclei increases progressively and by a coalescence of the nuclei, a continuous Fe films grow on the Si surface. In this case, the Fe films show a highly oriented columnar structure and x-ray diffraction patterns reveal that the phase ${\alpha}-Fe$ grows on the n-Si(111) substrates.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes (나노입자 코팅 CFRP의 모의 낙뢰 충격손상 후 압축시험에서의 음향방출 거동)

  • Shin, Jae-Ha;Kwon, Oh-Yang;Seo, Seong-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.62-67
    • /
    • 2011
  • Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10~40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

Comparison between Cournot-Nash and Stackelberg Game in Bi-level Program (Bi-level program에서 Cournot-Nash게임과 Stackelberg게임의 비교연구)

  • Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.99-106
    • /
    • 2004
  • This paper presents some comparisons between Cournot-Nash and Stackelberg game in bi-level program, composed of both upper level program and lower level one. The upper level can be formulated to optimize a specific objective function, while the lower formulated to express travelers' behavior patterns corresponding to the design parameter of upper level problem. This kind of hi-level program is to determine a design parameter, which leads the road network to an optimal state. Bi-level program includes traffic signal control, traffic information provision, congestion charge and new transportation mode introduction as well as road expansion. From the view point of game theory, many existing algorithms for bi-level program such as IOA (Iterative Optimization Assignment) or IEA (Iterative Estimation Assignment) belong to Cournot-Nash game. But sensitivity-based algorithms belongs to Stackelberg one because they consider the reaction of the lower level program. These two game models would be compared by using an example network and show some results that there is no superiority between the models in deterministic case, but in stochastic case Stackelberg approach is better than that of Cournot-Nash one as we expect.