• Title/Summary/Keyword: mode behavior

Search Result 2,032, Processing Time 0.028 seconds

Characteristics of Fatigue Crack Propagation and Changes in Strain Induced Martensite α' of STS 304 Stainless Steel (LNG 304 스테인레스강의 피로균열전파특성과 변형유발 마르텐사이트 함량의 변화)

  • Kim, Song-Hee;Pak, Hyung-Rae;Lee, Hyun-Seung
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.341-348
    • /
    • 2001
  • The effect of initial ${\alpha}^{\prime}$ in STS 304 Stainless Steel on fatigue resistance, and fatigue crack propagation behavior was studied with using C-T specimens. Higher ${\Delta}K_{th}$ was observed in the specimens with the content of 0% initial ${\alpha}^{\prime}$ than in the contents of 2% and 33% initial ${\alpha}^{\prime}$. The difference of da/dN at the same level of ${\Delta}K$ was distinctive in low and intermediate level of ${\Delta}K$ however became less different as the level of ${\Delta}K$ increased. It is because the formation of strain induced martensite occurred readily in lower ${\alpha}^{\prime}$ at the vicinity of the fatigue crack tip, which causes compressive residual stresses resulting in the enhancement of crack closure. In general fatigue cracks propagated transgranular mode and many segments of ridges were observed on the fracture surfaces. At the higher contents of initial ${\alpha}^{\prime}$ appeared the smaller size of ridge segments. Slips in austenite were blocked more frequently by the martensite colonies formed in austenite.

  • PDF

Effect of Cavity Material on the Q-Factor Measurement of Microwave Dielectric Materials (캐비티 재질이 마이크로파 유전체 공진기의 Q값 측정에 미치는 영향)

  • Park, Jae-Hwan;Park, Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.39-43
    • /
    • 2011
  • Effects of cavity material on the Q-factor measurement of microwave dielectric materials were studied by HFSS simulation and the measurements using metal cavity. $TE_{01\delta}$ mode resonant frequency was determined from the electric and magnetic field patterns and the loaded Q-factor was calculated from 3dB bandwidth of $S_{21}$ spectrum. When the cavity metal materials were Cu, SUS and Au cavity, the level of Q-factor was similar. However, Q-factor was significantly decreased when the cavity metal material was CuO. The Q-factor measurements of dielectric resonator by network analyzer using various metal cavity exhibits consistent behavior.

Mechanical behavior of crumb rubber concrete under axial compression

  • Ren, Rui;Liang, Jiong-Feng;Liu, Da-wei;Gao, Jin-he;Chen, Lin
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.249-256
    • /
    • 2020
  • This paper aims at investigating the effect of crumb rubber size and content on compressive behaviors of concrete under axial compression. Concrete specimens are designed and produced by replacing natural aggregate with crumb rubber content of 0%, 5%, 10%, 15% and three different sized crumb rubbers (No. 20, No. 40, No. 80 crumb rubber). And the failure mode, compressive strength, elastic modulus, stress-strain curves, peak strain and ultimate strain are experimentally studied. Based on the test results, formulas have been presented to determine the compressive strength, elastic modulus, the relationship between prism compressive strength and cube compressive strength, stress-strain curves and peak strain of crumb rubber concrete (CRC). It is found that the proposed formulas agree well with the test result on the whole, which may be used to practical applications.

2D numerical modeling of icebreaker advancing in ice-covered water

  • Sawamura, Junji
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.385-392
    • /
    • 2018
  • This paper presents 2D numerical modeling to calculate ship-ice interactions that occur when an icebreaker advances into ice-covered water. The numerical model calculates repeated icebreaking of an ice plate and removal of small ice floes. The icebreaking of the ice plate is calculated using a ship-ice contact detection technique and fluid-structural interaction of ice plate bending behavior. The ship-ice interactions in small ice floes are calculated using a physically based modeling with 3DOF rigid body equations. The ice plate is broken in crushing, bending, and splitting mode. The ice floes drift by wind or current and by the force induced by the ship-ice interaction. The time history of ice force and ice floe distribution when an icebreaker advances into the ice-covered water are obtained numerically. Numerical results demonstrate that the time history of ice force and distribution of ice floes (ice channel width) depend on the ice floe size, ship motion and ice drifting by wind or current. It is shown that the numerical model of ship maneuvering in realistic ice conditions is necessary to obtain precise information about the ship in ice-covered water. The proposed numerical model can be useful to provide data of a ship operating in ice-covered water.

Motion-based design of TMD for vibrating footbridges under uncertainty conditions

  • Jimenez-Alonso, Javier F.;Saez, Andres
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.727-740
    • /
    • 2018
  • Tuned mass dampers (TMDs) are passive damping devices widely employed to mitigate the pedestrian-induced vibrations on footbridges. The TMD design must ensure an adequate performance during the overall life-cycle of the structure. Although the TMD is initially adjusted to match the natural frequency of the vibration mode which needs to be controlled, its design must further take into account the change of the modal parameters of the footbridge due to the modification of the operational and environmental conditions. For this purpose, a motion-based design optimization method is proposed and implemented herein, aimed at ensuring the adequate behavior of footbridges under uncertainty conditions. The uncertainty associated with the variation of such modal parameters is simulated by a probabilistic approach based on the results of previous research reported in literature. The pedestrian action is modelled according to the recommendations of the Synpex guidelines. A comparison among the TMD parameters obtained considering different design criteria, design requirements and uncertainty levels is performed. To illustrate the proposed approach, a benchmark footbridge is considered. Results show both which is the most adequate design criterion to control the pedestrian-induced vibrations on the footbridge and the influence of the design requirements and the uncertainty level in the final TMD design.

Bond behavior between high volume fly ash concrete and steel rebars

  • Liang, Jiong-Feng;Hu, Ming-Hua;Gu, Lian-Sheng;Xue, Kai-Xi
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.625-630
    • /
    • 2017
  • In this paper, 54 pull-out specimens and 36 cubic specimens with different replacement ratios of fly ash in the concrete (i.e., 0%, 20%, 30%, 40%, 50%, 60%) were fabricated to evaluate the bond at the interface between fly ash concrete and steel rebar. The results showed that the general shape of the bond-slip curve between fly ash concrete and steel rebar was similar to that for the normal concrete and steel rebar. The bond strength between fly ash concrete and the steel rebar was closer to each other at the same rebar diameter, irrespective of the fly ash replacement percentage. On the basis of a regression analysis of the experimental data, a revised bond strength mode and bond-slip relationship model were proposed to predict the bond-slip behaviour of high volume fly ash concrete and steel rebar.

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

Effect of control route on the unstart/restart characteristics of an over-under TBCC inlet

  • Li, Nan;Chang, Juntao;Tang, Jingfeng;Yu, Daren;Bao, Wen;Song, Yanping
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.431-444
    • /
    • 2018
  • Numerical simulations have been conducted to study the unstart/restart characteristics of an over-under turbine-based combined-cycle propulsion system (TBCC) inlet during the inlet transition phase. A dual-solution area exists according to the Kantrowitz theory, in which the inlet states may be different even with the same input parameters. The entire transition process was divided into five stages and the unstart/restart hysteresis loop for each stage was also obtained. These loops construct a hysteresis surface which separates the operating space of the engine into three parts: in which a) inlet can maintain a started state; b) inlet keeps an unstarted state; c) inlet state depends on its initial state. During the transition, the operation of the engine follows a certain order with different backpressures and splitter angles, namely control route, which may result in disparate inlet states. Nine control routes with different backpressures and transition stages were designed to illuminate the route-dependent behavior of the inlet. The control routes operating towards the unstart boundary can make the inlet transit from a started state into an unstarted one. But operating backward the same route cannot make the inlet restart, additional effort should be made.

On demand nanowire device decalcomania

  • Lee, Tae-Il;Choi, Ji-Hyuck;Moon, Kyung-Ju;Jeon, Joo-Hee;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.26.1-26.1
    • /
    • 2009
  • A simple route of external mechanical force is presented for enhancing the electrical properties of polymer nanocomposite consisted of nanowires. By dispersing ZnO nanowires in polymer solution and drop casting on substrates, nanocomposite transistors containing ZnO nanowires are successfully fabricated. Even though the ZnO nanowires density is properly controlled for device fabrication, as-cast device doesn't show any detectable currents, because nanowires are separated far from each other with the insulating polymer matrix intervening between them. Compared to the device pressed at 300 kPa, the device pressed at 600 kPa currents increased by 50times showing the linear behavior against drain voltage and exhibits promising electrical properties, which operates in the depletion mode with higher mobility and on-current. Such an improved device performance would be realized by the contacts improvement and the increase of the number of electrical path induced by external force. This approach provides a viable solution for serious contact resistance problem of nanocomposite materials and promises for future manufacturing of high-performance devices.

  • PDF

Press induced enhancement of contact resistance innanocomposite FET based on ZnO nanowire/polymer

  • Choe, Ji-Hyeok;Mun, Gyeong-Ju;Jeon, Ju-Hui;Kar, Jyoti Prakash;Das, Sachindra Nath;Gang, Dal-Yeong;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.26.2-26.2
    • /
    • 2009
  • A simple route of externalmechanical force is presented for enhancing the electrical properties ofpolymer nanocomposite consisted of nanowires. By dispersing ZnO nanowires inpolymer solution and drop casting on substrates, nanocomposite transistorscontaining ZnO nanowires are successfully fabricated. Even though the ZnOnanowires density is properly controlled for device fabrication, as-cast devicedoesn't show any detectablecurrents, because nanowires are separated far from each other with theinsulating polymer matrix intervening between them. Compared to the devicepressed at 300 kPa, the device pressed at 600 kPa currents increased by 50times showing the linear behavior against drain voltage and exhibits promisingelectrical properties, which operates in the depletion mode with highermobility and on-current. Such an improved device performance would be realizedby the contacts improvement and the increase of the number of electrical pathinduced by external force. This approach provides a viable solution for seriouscontact resistance problem of nanocomposite materials and promises for futuremanufacturing of high-performance devices.

  • PDF