The aim of this study is to investigate the ductile fracture behavior under mixed mode (I/II) loading using SA533B pressure vessel steel. Anti-symmetric 4-point (AS4P) bonding tests were performed to obtain the J-R curves under two different mixed mode (I/II) loadings. In addition, the fractographic examination of fracture surfaces was carried out to compare with those of pure Mode I and Mode II. In conclusions, the J-R curves under Mixed Mode (I/II) loading were located between those of Mode I and Mode II loadings. When the mixture ratio of mixed mode (I/II) loading was high, the J-R currie of mixed mode (I/II) loading approached that of pure mode I loading after some amount of crack propagation. In contrast with the above fact, if the mixture ratio was low, the J-R curve looked after that of pure mode II loading. The fractographic evidences such as the shape of dimples under different loading conditions supported these conclusions.
The aim of this study is to investigate the ductile fracture behavior under mixed mode (I/II) loading using SA533B pressure vessel steel. Anti-symmetric 4-point (AS4P) bending tests were performed to obtain the J-R curves under two different mixed mode (I/II) loadings. In addition, finite element analysis using Rousselier Ductile Damage Theory was carried out to predict the J-R curves under mixed mode (I/II) loadings. In conclusions, the J-R curves under. Mixed Mode (I/II) loading were located between those of Mode I and Mode II loading. When the mixity of mixed mode (I/II) loading was high, the J-R curve of mixed mode (I/II) loading approached that of pure mode I loading after some amount of crack propagation. In contrast with the above fact, if the mixity was low, the J-R curve took after that of pure mode II loading. Finally, it was found that the predicted J-R curves made a good agreement with the test data through the tuning procedures of $\beta$ values at the different mixed mode (I/II) loading.
The purpose of this paper is to investigate fatigue crack behavior under shear(Mode II) loading. Various specimens and devices have been used in order to produce Mode II loading in fatigue experiments for shear crack propagation. But, there is not sufficient comparisons of experimental results between Mode II and others loading modes, because of characteristics of applied loads and specimens. So, compact tension shear(CTS) specimens were used in this paper to investigate the propagation behavior of Mode II by comparing the experimental results between loading modes. We firstly observed the characteristics which was showed in Mode II experiment using CTS specimens. The experimental results under Mode II loading were compared with fatigue crack behavior under Mode I and Mixed-mode I+II loading. The characteristics for initiation and propagation behavior under Mode II loading was investigated by such comparisons.
암석파괴역학은 토목공학과 암반공학의 다양한 분야에서 널리 적용되는 학문이다. 그러나 대부분의 암반 공학 문제에서 mode II 거동이 우세함에도 불구하고 관련 연구는 mode I 거동에 대한 것이 대부분이다. 현재 mode I의 경우 4개, mode II 파괴인성의 경우 단 한 개의 ISRM 표준시험법이 있다. 본 연구에서 제안하는 새로운 시험법은 문헌조사를 통해서 필요조건으로 구속압 가능 여부, 노치성형의 용이성, 기존 시험장비의 활용, 단순한 시험절차를 정하고 이에 부합하도록 개발하였으며 SCC(Short Core in Compression)로 이름을 정하였다. Mode II 파괴인성 계산에 필요한 응력확대계수 계산식을 3차원 수치해석을 통해 선하중과 분포하중 조건에 대해서 구하였고 노치성형을 위한 지그도 제작하였다. 개발된 시험법을 MTS 시스템을 사용하여 화강암에 적용하였으며 가압속도는 0.002 mm/s로 하였다. 시험 결과 $2.33MPa{\sqrt{m}}$의 mode II 파괴인성을 얻었다. 동일한 화강암 블록에서 확보한 시험편에 대하여 간접인장시험으로 구한 mode I 파괴인성은 $1.12MPa{\sqrt{m}}$였다. 따라서 $K_{IIC}/K_{IC}=2.08$로 mode II 파괴인성이 mode I보다 크게 나타났다. 또한 비교적 매끄러운 파괴면과 암분의 생성을 통하여 SCC 시험법이 mode II 거동을 잘 표현함을 확인하였다. 따라서 제안된 SCC 시험법은 암석의 mode II 파괴인성을 결정하는 데 사용할 수 있을 것으로 판단된다.
본 연구는 균열 발생 및 전파단계에서 하중모드 II의 영향을 평가하기 위해 피로균열 하한계 영역의 혼합모드 I+II 하중을 통해 실험적으로 평가하였다. 균열 발생단계(Stage I)에서는 혼합모드상태에서 하중작용 각도(${\theta}$)가 증가할수록 모드 II 영향으로 인하여 낮은 하중에서 균열이 발생하고, 균열 전파단계 (Stage II)에서는 균열전파 속도는 감소하였다. 다단계 하중작용 각도변화에 따른 하중모드 II영향은 균열전파단계 실험을 통해 평가하였다. 혼합모드 I+II 하중 작용 시 작용각도 ($0^{\circ}{\rightarrow}{\theta}{\rightarrow}60^{\circ}$) 증가에 따라 피로균열전파속도는 감소하였으며 늦게 발생한 균열에서도 마찬가지로 감소하였다. 작용각도가 ${\theta}{\geq}75^{\circ}$ 범위에서는 하중작용각도 증가에 따라 피로균열전파속도가 증가하고 피로수명이 감소하는 것을 확인하였다.
An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.
The aim of this study is to investigate the ductile fracture behaviour under pure Mode II loading using A533B pressure vessel steel. Single punch shear(SPS) test was performed to obtain the J-R curve under pure Mode II loading which was compared with that of the Model I loading. Simulation using Rousellier Ductile Damage Theory(RDDT) was carried out with 4-node quadrilateral element(L(sub)c=0.25mm). For the crack advance, the failed element removal technique was adopted with a $\beta$ criterion. Through the $\beta$ value tuning-up procedures, $\beta$(sub)crit(sup)II was determined as 1.5 in contrast with $\beta$(sub)crit(sup)I=5.5. In conclusion, it was found that the J-R curve under Mode II loading was located at lower part than that under Mode I loading obtained from the previous study and that the $\beta$ values strongly depended on the loading type. In addition, the predicted result using RDDT showed a good agreement with the SPS experimental one under pure Mode II loading.
중앙에 균열을 갖는 단층 그래핀시트(single layer graphene sheet, SLGS)의 모드 II 파괴 거동을 원자 시뮬레이션과 해석 모델에 기초하여 고찰하였다. 지그재그 그래핀 모델의 파괴를 분자동역학(molecular dynamics, MD)에 의해 해석한 결과 모드 II 파괴인성은 $2.04MPa{\sqrt{m}}$인 것으로 밝혀졌다. 또한 SLGS의 이론적인 $K_{IIc}$를 유도하기 위해 면내전단하중을 받는 다공체에 대한 파괴역학적 해석도 진행하였고 유한요소해석도 병행하였다. 모드 I과 모드 II의 비를 다양하게 변화시켜가면서 SLGS 의 혼합모드 파괴를 검토한 결과 혼합모드 파괴조건식이 얻어졌고 다른 문헌의 결과와 비슷함을 알 수 있었다.
본 연구에서는 CFRP 적층판에 다양한 종류의 부직포를 삽입하여 모드 II 층간파괴인성을 평가하고, 파단면의 SEM 분석을 통해 층간파괴인성의 증가 원인을 파악하였다. 모드 II 층간파괴인성값($J/m^2$)은 ENF실험에 의하여 얻어졌으며, 부직포를 삽입하지 않은 시편과 3종류의 부직포(8 $g/m^2$의 탄소부직포, 10 $g/m^2$의 유리부직포, 8 $g/m^2$의 폴리에스테르부직포)가 각각 삽입된 시험편들이 준비되었다. 각 시험편들에 대한 모드 II 층간파괴인성값은 부직포를 삽입하지 않은 시편을 기준으로 탄소부직포를 삽입한 시편은 197.7% 증가하였고, 유리부직포를 삽입한 시편은 약 135.4% 증가하였으며, 폴리에스테르부직포를 삽입한 시편은 약 158.7% 증가하였다. 부직포 삽입에 의한 모드 II 층간파괴인성값의 증가 원인은 SEM 분석에 의한 결과 단섬유의 섬유가교(Fiber bridging), 섬유파단(Fiber breakage), 헥클(Hackle) 등의 발생에 기인된 것으로 확인되었다.
In this paper, as elastic-plastic fracture toughness test under mixed mode loading was proposed using a single edge-cracked specimen subjected to bending moment(M), shearing force(F), and twisting moment(T). The J-integral of a crack in the specimen is expressed in the form J=$J_I$+ $J_II$$J_III$, where $J_I$, $J_II$ and $J_III$ are the components of mode I, mode II and mode III deformation, respectively. $J_I$, $J_II$ and $J_III$ can be estimated from M-$\theta$ ($\theta$;crack opening angle), F-U(U; crack shear displacement) and T-$\alpha$ ($\alpha$;crack twisting angle). In order to obtain the the M<-TEX>$\theta$, F-U and T-$\alpha$ diagram inreal time, a new deformaiton gage for mixed mode loading was proposed using the optical position sensing device(PSD). The elastic-plastic fracture toughness test was carried out with an aluminum alloy. The loading apparatus was designed and manufactured for this experiment. For the loading condition of the crack initatio in the mixed mode, the MMT -3(mode I+ mode II+ mode III) has the lowest values out of the all specimens. This implies that MMT-3 is possible of the crackinitation at lower load, if the specimen acts on together with the torque under the same loading condition. An elastic-plastic fracture toughness test using the PSD brings a successful experimentation in measuring the crack deformation(mode I+ mode II+ mode III).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.