• Title/Summary/Keyword: modal superposition

Search Result 84, Processing Time 0.023 seconds

Calculation of Dynamic Stress Time History of a Component Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 동응력 이력 계산기술 개발)

  • 박찬종;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-60
    • /
    • 2000
  • In order to design a reliable machine component efficiently, it is necessary to set up the process of durability analysis using computer simulation technique. In this paper, two methods for dynamic stress calculation, which are basis of durability analysis, are reviewed. Then, a user-oriented dynamic stress analysis program is developed from these two algorithms together with a general-purpose flexible body dynamic analysis and structural analysis programs. Finally, a slider-crank mechanism which has a flexible connecting-rod is chosen to show the special characteristics of these two dynamic stress calculation methods.

  • PDF

Dynamic response of cable-stayed bridges subjected to sudden failure of stays - the 2D problem

  • Raftoyiannis, I.G.;Konstantakopoulos, T.G.;Michaltsos, G.T.
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.345-365
    • /
    • 2014
  • A significant problem met in engineering practice when designing cable-stayed bridges is the failure of cables. Many different factors can lead to sudden failure of cables, such as corrosion, continuous friction or abrasion, progressive and extended crevice created by fatigue and finally an explosion caused by sabotage or accident, are some of the causes that can lead to the sudden failure of one or more cables. This paper deals with the sudden failure of cables in a special form of cable-stayed bridges with a single line of cables anchored at the central axis of the deck's cross-section. The analysis is carried out by the modal superposition technique where an analytical method developed by the authors in a previous work has been employed.

Estimation of floor response spectra induced by artificial and real earthquake ground motions

  • Pu, Wuchuan;Xu, Xi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.377-390
    • /
    • 2019
  • A method for estimating the floor response spectra (FRS) of elastic structures under earthquake excitations is proposed. The method is established based on a previously proposed direct estimation method for single degree of freedom systems, which generally overestimates the FRS of a structure, particularly in the resonance period range. A modification factor is introduced to modify the original method; the modification factor is expressed as a function of the period ratio and is determined through regression analysis on time history analysis results. Both real and artificial ground motions are considered in the analysis, and it is found that the modification factors obtained from the real and artificial ground motions are significantly different. This suggests that the effect of ground motion should be considered in the estimation of FRS. The modified FRS estimation method is further applied to a 10-story building structure, and it is verified that the proposed method can lead to a good estimation of FRS of multi-story buildings.

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure (지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Jung, Kyung-Moon;Seo, Chan-Hee;Kim, Myung-Gyu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF

Dynamic Behavior and Resonance Reduction of Two-Span Continuous Bridges for Korean Train eXpress (KTX용 2경간 연속교량의 동적거동 및 공진감소)

  • Oh, Juwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.95-104
    • /
    • 2008
  • Dynamic behaviors of the two-span continuous bridge which is one of prototypes on Gyoung-Bu high-speed railway are analyzed and some methods for reducing the resonance of the bridge are proposed. The bridge is modeled as a two-span continuous beam and the load is a vehicle of TGV-K (2p+18T) with length of 380.15 meter traveling on the railway bridge at some constant velocity. The equations governing the dynamic behaviors of the bridge are partial differential equations produced by using a system with distributed mass and elasticity. The analysis of the governing equations is performed by the mode superposition method which has modal coordinates solved by Duhamel's integral. Without considering the train velocity the dynamic reponses can be greatly reduced at some special lengths of bridge. It is different from the results of simple bridges researched so far. When the dynamic responses increase rapidly to make a resonance phenomenon depending on the train velocities, the several methods are proposed to deduce the resonance.

Estimation of Dynamic Displacements of a Bridge using FBG Sensors (FBG센서를 이용한 교량의 동적변위 추정)

  • Shin, Soobong;Yun, Byeong-Goo;Kim, Jae-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.101-109
    • /
    • 2009
  • An algorithm is proposed for estimating dynamic displacements of a bridge by using FBG sensors and by superposing some measurable low modes. Modal displacements are obtained from the beam theory and the generalized coordinates are deduced from the strains measured by FBG sensors. By considering flexural and torsional modes occurred in bridges only as flexural modes of a simply supported beam by separating a bridge into multiple girders or parts, the proposed algorithm can be applied to various types of bridges. Guidelines are provided theoretically for determining the number of modes and the number of strain gages to be used. The proposed algorithm has been examined through simulation studies on various types of bridges, laboratory experiments on a model bridge, and field tests on a simple span PC Box girder bridge. Through the simulation study, the effects of the error in the vibration modes and measurement noise on estimating the dynamic displacements are analyzed.

Dynamic Analysis of Geometric Nonlinear Behavior of Suspension Bridges under Random Wind Loads (랜덤풍하중에 대한 현수교의 기하학적 비선형 거동의 동적해석)

  • Yun, Chung Bang;Hyun, Chang Hun;Yoo, Je Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.185-196
    • /
    • 1988
  • In this study, a method of nonlinear dynamic analysis of suspension bridges subjected to random wind loads is pre.sented. The nonlinearity considered is the one due to the interaction between the motion of the bridge girder and the tertsion variation of the main cables. The equation of motion is formulated using a continuum approach. The coupling between the vertical and torsional motions are included in the analysis. The equation of motion is solved by using the mode superposition method. The analysis is carried out in the frequency domain utilizing the stochastic linearization technique on to the modal equations. In the linearization procedure, the nonlinear terms are approximated as linear ones with constant terms. The verification of the method has been performed on a case with four modal degrees of freedom. Example analyses are carried out on two suspension bridges for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably.

  • PDF

Nonlinear Response Analysis of Multi-Degree-of-Freedom Building Structures Using Response Spectrum Method (응답스펙트럼법에 의한 고층 건축물의 탄소성 지진응답해석법)

  • Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.1-9
    • /
    • 1997
  • This paper examined various aspects of a linear and a nonlinear response spectrum method in seismic response analysis of multi-story building structures. The response spectrum method that has been widely used in the analysis of linear structures was proposed different mode superposition method by several ivestigators, and the differences between combinations with an elastic modal analysis reviwed closely. It seems, however, that this method is not used to nonlinear seismic analysis. It is the purpose of this paper to propose an alternative method by means of which a nonlinear MDOF structure with long period may be analysed by an extention of response spectrum method. For nonlinear seismic analysis of high-rise building structures using technique proposed in this study, it is intended to serve primarily as a tool in preliminary designs instead of time history analysis.

  • PDF

Peak Factors for Bridges Subjected to Asynchronous Multiple Earthquake Support Excitations

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Accurate response analysis of long span bridges subjected to seismic excitation is important for earthquake hazard mitigation. In this paper, the performance of a typical four span continuous reinforced concrete bridge model subjected to asynchronous multiple seismic excitations at the supports is investigated in both the time and frequency domains and the results are compared with that from a relevant uniform support excitations. In the time domain analysis, a linear modal superposition approach is used to compute the peak response values. In the frequency domain analysis, linear random vibration theory is used to determine the root mean square response values where the cross correlation effects between the modal and the support excitations on the seismic response of the bridge model are included. From the two sets of results, a practical range of peak factors which are defined to be the ratio of peak and the root mean square responses are suggested for displacements and forces in members. With reliable practical values of peak factors, the frequency domain analysis is preferred for the performance based design of bridges because of the computational advantage and the generality of the results as the time domain analysis only yields results for the specific excitation input.

Study on Dynamic Characteristic and Safety of 45m Steel Box Railway Bridge according to Girder hight and Ballast (강상형 철도교의 도상종류와 형고에 따른 동특성 및 안정성 연구)

  • Yun, Ji-Hong;Choi, Kwon-Young;Kwon, Ku-Sung;An, Ju-Ok;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3147-3155
    • /
    • 2011
  • Railway bridges are highly susceptible to resonance due to the equidistant axle load with constant speed of train. Thus, it is inevitable verify dynamic characteristics and quantities against dynamic guidelines. Recently, various new-type bridges are developed and applies to medium span length between 30m and 40m. However, just steel box girder bridge is under review for span length between 45m and 50m without development any new technologies. This study investigate the dynamic properties and safety of steel box railway bridge having span length 45m in alternative girder hight and kind of ballast. Numerical analysis is performed time series analysis by mode superposition using calculated natural vibration frequency and mode after carry out a free vibration analysis and extract modal parameter to higher modes. The results are then compared to various dynamic stability standards toward target bridge's dynamic stability analysis. The result of this study is expected as a reference for design railway bridges.

  • PDF