• 제목/요약/키워드: modal superposition

검색결과 84건 처리시간 0.026초

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

비비례 감쇠시스템의 해석을 위한 효율적인 모드 중첩법 (Efficient Mode Superposition Method for Non-Classically Damped Systems)

  • 조상원;조지성;박선규;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.549-555
    • /
    • 2000
  • The improved mode superposition methods for non-classically damped systems are presented in this paper. Generally, the mode superposition method uses a relatively small subset of the normal modes of structures. The mode acceleration method and the modal truncation augmentation method improve the results of the mode superposition method by considering effects of truncated high modes. For using these methods to analyze non-classically damped systems, the systems are approximated to the classically damped systems and thereby the errors are induced. In this paper, the mode acceleration method and the modal truncation augmentation method are expanded to analyze the non-classically damped systems. The applicability of the expanded methods is verified by closed form solutions and numerical examples. The expanded modal truncation augmentation method is conditionally stable depending on the pattern of the external loading in the non-classically damped systems whereas the expanded mode acceleration method is stable for the all cases of loading. In the stable case, the results are the same with those of the expanded mode acceleration method.

  • PDF

실 주행조건을 고려한 군용 소형트럭의 가상 내구해석 (Virtual Fatigue Analysis of a Small-sized Military Truck Considering Actual Driving Modes)

  • 서권희;임현빈;송부근;안창순
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.120-127
    • /
    • 2008
  • A military vehicle undergoes normal to extreme driving conditions, which consequently induce the fatigue and fracture of cabin and frame. So, it is important to estimate the fatigue life of two components at an initial design stage. In this paper, Modal Superposition Method(MSM) was applied to evaluate the durability performance of a small-sized military truck. For reliable durability analysis, a Virtual Test Lab(VTL) Model was established by correlation with experimental results. These data were extracted from actual driving test, modal test, and SPMD(Suspension Parameter Measuring Device) test. This process shows that Virtual Fatigue Analysis can be a useful approach in the development of military vehicles as well as commercial vehicles.

Comparison of model order reductions using Krylov and modal vectors for transient analysis under seismic loading

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.643-651
    • /
    • 2020
  • Generally, it is necessary to perform transient structural analysis in order to verify and improve the seismic performance of high-rise buildings and bridges against earthquake loads. In this paper, we propose the model order reduction (MOR) method using the Krylov vectors to perform seismic analysis for linear and elastic systems in an efficient way. We then compared the proposed method with the mode superposition method (MSM) by using the limited numbers of modal vectors (or eigenvectors) calculated from the modal analysis. In the calculation, the data of the El Centro earthquake in 1940 were adopted for the seismic loading in the transient analysis. The numerical accuracy and efficiency of the two methods were compared in detail in the case of a simplified high-rise building.

모달 응력 회복법(Modal Stress Recovery)을 이용한 Torsion Beam Axle 내구해석 (Analysis of Durability of Torsion Beam Axle Using Modal Stress Recovery Method)

  • 고준복;임영훈;이동철
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1339-1344
    • /
    • 2010
  • 모달중첩법은 구조물의 진동특성을 고려하여 내구수명을 평가할 수 있는 내구해석 기법이다. 본 논문에서는 모달중첩법과 유사하면서도 다물체 동역학 해석시 모달좌표를 직접 계산하여 전체적인 해석시간을 줄일 수 있는 모달응력 회복법을 이용한 내구해석 기법의 타당성에 대하여 검토하였다. 이를 위해 자동차 부품 중 대표적으로 동특성을 고려해야 하는 토션빔 액슬에 대하여 모달응력 회복법을 이용한 내구해석 및 시험을 실시하였다. 해석결과는 시험결과와 취약위치, 내구수명 등이 양호한 일치 결과를 나타내었다. 따라서 모달응력 회복법을 이용한 내구해석 기법은 다양한 구조물의 동특성을 반영한 내구수명 평가에 적용될 수 있을 것이다.

탄성 댐퍼가 추가된 대형철골 구조물의 응답특성 (Response Characteristics Of Steel Frame Structures With Added Elastic Dampers)

  • Bae, Chun-Hee;Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Park, Young-Pil
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.361.1-361
    • /
    • 2002
  • Coupling adjacent steel frame using elastic dampers fer control of response to low and moderate dynamic event is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristic, mainly modal damping ratio and modal frequency, of damper linked linear adjacent steel frame for fractical use. Dynamic response of steel frame linked by hydraulic-excitation method. (omitted)

  • PDF

Fatigue Assessment of Very Large Container Ships Considering Springing Effect Based on Stochastic Approach

  • Jung, Byoung-Hoon;Ahn, In-Gyu;Seo, Sun-Kee;Kim, Beom-Il
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.120-127
    • /
    • 2020
  • Evaluation of fatigue strength considering the springing effect of very large container ships is crucial in the design stage. In this study, we established a fatigue strength evaluation method considering a linear springing component in the frequency domain. Based on a three-dimensional global model, a fluid-structure interaction analysis was performed and the modal superposition method was applied to determine the hot spot stress at the hatch corner of very large container ships. Fatigue damage was directly estimated using the stress transfer function with a linear springing response. Furthermore, we proposed a new methodology to apply the springing effect to fatigue damage using hull girder loads. Subsequently, we estimated the fatigue damage contribution due to linear springing components along the ship length. Finally, we discussed the practical application of the proposed methods.

Dynamic response analysis of generally damped linear system with repeated eigenvalues

  • Yu, Rui-Fang;Zhou, Xi-Yuan;Yuan, Mei-Qiao
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.449-469
    • /
    • 2012
  • For generally damped linear systems with repeated eigenvalues and defective eigenvectors, this study provides a decomposition method based on residue matrix, which is suitable for engineering applications. Based on this method, a hybrid approach is presented, incorporating the merits of the modal superposition method and the residue matrix decomposition method, which does not need to consider the defective characteristics of the eigenvectors corresponding to repeated eigenvalues. The method derived in this study has clear physical concepts and is easily to be understood and mastered by engineering designers. Furthermore, this study analyzes the applicability of step-by-step methods, including the Newmark beta and Runge-Kutta methods for dynamic response calculation of defective systems. Finally, the implementation procedure of the proposed hybrid approach is illustrated by analyzing numerical examples, and the correctness and the effectiveness of the formula are judged by comparing the results obtained from the different methods.

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements

  • Phuor, Ty;Yoon, GilHo
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.411-428
    • /
    • 2022
  • This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.

충격시험에 의한 실험모드특성을 이용한 구조물의 지진응답 예측 (Seismic Response Prediction of a Structure Using Experimental Modal Parameters from Impact Tests)

  • 조성국;조양희;소기환
    • 한국지진공학회논문집
    • /
    • 제14권2호
    • /
    • pp.75-84
    • /
    • 2010
  • 원자력발전소에 설치되는 주요 전기기기들의 내부 부품을 내진검증하기 위해서는 캐비닛내부응답스펙트럼이 필요하고, 이는 캐비닛의 각 위치에서 정확한 지진응답을 구한 후에 생성이 가능하다. 반면에 대부분의 전기기기는 질량과 강성 분포가 복잡하기 때문에 해석적 방법에 의해 동적 분석을 수행하는 것이 어렵다. 이러한 여건을 감안하여 이 연구에서는 해석과 시험을 조합하여 기기의 지진응답을 예측하는 간편한 절차를 제안하였다. 제안된 절차는 먼저 충격시험을 통하여 규명된 실험모드특성을 이용하여 독립된 모드방정식을 구성하고, 이로부터 모드응답을 계산한 다음, 각 모드응답을 중첩함으로써 구조물의 지진응답을 예측한다. 제안된 절차의 신뢰성을 검증하기 위해서, 별도로 제작된 단순 강재 프레임 시편에 제안된 절차를 적용하여 지진응답을 예측하고, 이를 실제 진동대시험을 통하여 계측한 결과와 비교하였다. 이 연구를 통하여 충격시험에 의해 얻어진 실험모드특성을 이용하여 구조물의 지진응답을 비교적 정확하게 예측할 수 있음을 확인하였다.