• Title/Summary/Keyword: modal method

Search Result 1,851, Processing Time 0.028 seconds

Design of an actuator for simulating wind-induced response of a building structure

  • Park, Eun Churn;Lee, Sang-Hyun;Min, Kyung-Won;Chung, Lan;Lee, Sung-Kyung;Cho, Seung-Ho;Yu, Eunjong;Kang, Kyung-Soo
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.85-98
    • /
    • 2008
  • In this paper, excitation systems using a linear mass shaker (LMS) and an active tuned mass damper (ATMD) are presented to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop functions are used to prevent the actuator from exciting unexpected modal responses and an initial transient response and thus, to minimize the error between the wind and actuator induced responses. The analyses results from a 76-story benchmark building problem for which the wind load obtained by a wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately reproduce the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

Vibration and damping behaviors of symmetric layered functional graded sandwich beams

  • Demir, Ersin
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.771-780
    • /
    • 2017
  • In this study, free vibration and damping behaviors of multilayered symmetric sandwich beams and single layered beams made of Functionally Graded Materials were investigated, experimentally and numerically. The beams were composed of Aluminum and Silicon Carbide powders and they were produced by powder metallurgy. Three beam models were used in the experiments. The first model was isotropic, homogeneous beams produced by using different mixing ratios. In the second model, the pure metal layers were taken in the middle of the beam and the weight fraction of the ceramic powder of each layer was increased towards to the surfaces of the beam in the thickness direction. In the third model, the pure metal layers were taken in the surfaces of the beam and the weight fraction of the ceramic powder of each layer was increased towards to middle of the beam. Then the vibration tests were performed. Consequently, the effects of stacking sequence and mixing ratio on the natural frequencies and damping responses of functionally graded beams were discussed from the results obtained. Furthermore, the results obtained from the tests were supported with a finite-element-based commercial program, and it was found to be in harmony.

Investment method of FACTS for improvement of stability for KEPCO System (안정도 향상을 위한 한전계통에서의 FACTS 투입 방안 모색)

  • Kang, Sang-Gyun;Lee, Byoung-Jun;Kwon, Sae-Hyuk;Song, Hwa-Chang;Yoon, Jong-Soo;Jang, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.208-210
    • /
    • 2005
  • 본 논문에서는 전압 불안정성을 해소시키기 위한 방안으로 FACTS를 투입하기 위한 방안에 대하여 논의 하였다. 우선적으로 전압안정도 기준을 수립하고 상정사고에 대하여 PV 해석을 실시하고 전압안정도 기준을 만족시키지 못하는 사고를 스크리닝 한다. 각 상정 사고에 대하여 선정된 전압안정도 기준을 만족하도록 하기 위한 FACTS 투입 방안에 대하여 논의하였다. 일반적으로 전압안정도 측면에서 취약위치를 선정하는 방법으로 VQ해석이나 Tangent vector에 의한 Bus sensitivity를 구하여 부하변화에 대한 전압 감도(dV/$dP_{TOTAL}$)가 큰 모선을 취약 위치로 선정하는 방법, 또는 Modal Analysis를 통해 구한 참여인수값이 큰 모선을 취약 모선으로 선정하는 방법이 있다. 이 논문에서는 VQ해석과 Tangent vector를 이용한 해석 방법을 이용하여 전압안정도 측면에서 취약 위치 및 전압안정도 향상을 위한 FACTS 투입 후보지를 선정하였고 전압안정도 기준을 만족시키기 위해 각 후보지에 투입해야할 FACTS 용량을 산정하였다. 마지막으로 실질적으로 수도권 주요 모선에 모두 FACTS를 투입한 결과와 논문에서 사용한 방법과의 결과를 비교하여 적절한 절차를 사용하여 FACTS가 투입되었음을 확인하였다.

  • PDF

A Study on the Effect of the Inclined Structure on the Hydraulic Behavior Index within Sedimentation basin (경사 구조물이 침전지내 수리거동 Index에 미치는 영향)

  • Lim, Seong-Ho;Hwang, Jun-Sik;Park, No-Suk;Kim, Seong-Su;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.517-526
    • /
    • 2009
  • This research has been conducted to investigate the characteristics of hydraulic behavior within the PAC contactor, the rectangular shape sedimentation basin without inclined tube and the other one with inclined tube those are parts of demonstration plants(capacity : $2,000m^3/d$) in Korea Institute of Water and Environment. As results of tracer tests, the flow within PAC contactor was evaluated to divided into plug flow and dead space distinctly, and characteristics of dead space was close to that of CSTR(Complete/continuous Stirred Tank Reactor). Also, considering Reynolds number, Froude number, Morill, Modal, NCSTR Inex and plug flow/mixed flow fraction, in the case of the rectangular shape sedimentation basin without inclined tube, the characteristics of flow pattern was close to CSTR. On the other hand, in the case of the basin with inclined tube, the region of CSTR decreased precisely compared with the case of no-tube. Until now we have recognized that the inclined hydraulic structure just reduces the surface loading rate within a sedimentation basin. Actually besides, the inclined structure have an important effect on the hydraulic behavior within the basin.

Determination of Plane-wave Reflection Coefficient in Underwater Acoustic Pulse Tube Using Two-dimensional Fourier Filtering (이차원 푸리에 필터링을 이용한 수중음향 펄스 튜브에서의 평면파 반사계수 결정)

  • Kim, Wan-Gu;Kang, Hwi Suk;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.493-498
    • /
    • 2015
  • Complex acoustic signals can be formed in a water-filled acoustic pulse tube under some exciting conditions. It makes difficult to measure plane-wave reflection coefficient with the pulse tube for low frequency bands. In this study, using COMSOL Multiphysics we show that the tube wall excitation generates complex acoustic field of nonplanar mode as well as planar one. From such field incident or reflected planar mode can be decomposed respectively with a modal decomposition method, two-dimensional Fourier filtering. It makes possible to more accurately determine the plane-wave reflection coefficient of acoustic specimen with time gating.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction

  • Salman, Kashif;Tran, Thanh-Tuan;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1318-1326
    • /
    • 2020
  • Structural modification in the electrical cabinet is investigated by a proposed procedure that comprises of an experimental, analytical and numerical solution. This research emphasizes the linear dynamic analysis of the cabinet that is studied under the seismic excitation to demonstrate the real behavior of the cabinets in NPP. To this end, an actual electric cabinet is experimentally tested using an impact hammer test which reveals the fundamental parameters of the cabinet. The Frequency-domain decomposition (FDD) method is used to extract the dynamic properties of the cabinet from the experiment which is then used for numerical modeling. To validate the dynamic properties of the cabinet an analytical solution is suggested. The calibrated model is analyzed under the floor response obtained from the Connecticut nuclear power plant structure excited by Tabas 1978 (Mw 7.4) earthquake. Eventually, the grouping effect of the cabinets is proposed which represents the influence on the dynamic modification. This grouping of the cabinets is described more sophisticatedly by the theoretical understating, which results in a significant change in the seismic response. Considering the grouping effects will be helpful in the assessment of the real seismic behavior, design, and performance of cabinets.

Investigation of facto~ in square-type piezoelectric transformer using ATILA simulation (ATILA 시뮬레이션을 이용한 스퀘어타입 압전변압기의 펙터연구)

  • Vo, Vietthang;Kim, In-Sung;Joo, Hyeon-Kyu;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.327-327
    • /
    • 2010
  • In this paper, an investigation of factors affecting piezoelectric transformers is presented by ATILA software. These transformers are multi-layer piezoelectric transformers in square shape $28\;{\times}\;28\;mm$ and operate in first vibration mode for step-down function. The piezoelectric transformers were modeled in 3D-dimension and analyzed using finite element method in ATILA software, a popular software in piezoelectric analysis. Modal and harmonic modules were used in this process. Effective factors to the properties of piezoelectric transformers including different input electrode patterns, directions of polarization, sizes of connective comer, number of layers were examined on the simulated model using input voltage of 20 V and load resistance of $100\;{\Omega}$. Moreover, thermal analysis was also obtained with conditions of input voltage of 5 V and no-load.

  • PDF

Approximate Analysis for Shear Force Amplification Effect in Ordinary RC Shear Walls (철근콘크리트 보통전단벽의 전단력 증폭효과 근사해석)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.129-139
    • /
    • 2020
  • An approximate analysis method is proposed to predict the dynamic amplification of shear forces in ordinary reinforced concrete shear walls as a preliminary study. First, a seismic design for three groups of ordinary reinforced concrete shear walls higher than 60 m was created on the basis of nonlinear dynamic analysis. Causes for the dynamic amplification effect of shear forces were investigated through a detailed evaluation of the nonlinear dynamic analysis result. A new modal combination rule was proposed on the basis of that observation, in which fundamental mode response and combined higher mode response were summed directly. The fundamental mode response was approximated by nonlinear static analysis result, while higher mode response was computed using response spectrum analysis for equivalent linear structural models with the effective stiffness based on the nonlinear dynamic analysis result. The proposed approximate analysis generally predicted vertical distribution of story shear and shear forces of individual walls from the nonlinear dynamic analysis with comparable accuracy.

A Study on the Vibrational Characteristics of Natural Frequency with Balancing type Vibratory Conveyor Using Finite Element Methods (유한요소해석법을 이용한 평형형 진동이송기의 고유진동수 특성분석에 관한 연구)

  • Lee, Seung-Yong;Yi, Sung-Il;Kim, Chol-Ho;Choi, Yong-Jae;Choi, Woo-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.568-572
    • /
    • 2001
  • An industrial vibratory conveyor system is devised for large-scale feeding by the low-power, using natural frequency of the system. The important thing in this system is to determine the natural frequency and to drive by it. The purpose of this study is to build up reliance on the system with changing of element parameters for vibration characteristics of balancing type vibratory conveyor by using F.E.M. modeling. For investigating the natural frequency, modal testing is performed by using impact hammer, accelerometer and LMS/Vibration Analysis System. Experimental results are compared with F.E.M results. The results of the comparisons within the errors of less than 2 percent can verify the reliability of the F.E.M. analysis of the system. Also we can verify that the characteristics of natural frequency have linearly decreased(-6%) as adding the mass($50{\sim}600kg$). We can find that controlling driving frequency is necessary for triggering the natural frequency, but natural frequency is less affected by adding the mass on the balancing weight.

  • PDF