• Title/Summary/Keyword: modal method

Search Result 1,851, Processing Time 0.027 seconds

Finding the Time Dependent K Least Time Paths in Intermodal Transportation Networks (복합교통망에서의 동적K최소시간경로탐색)

  • Jo, Jong-Seok;Sin, Seong-Il;Im, Gang-Won;Mun, Byeong-Seop
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.77-88
    • /
    • 2006
  • The purpose of this study is to Propose the time dependent K-least time path algorithm applicable to a real-time based operation strategy in multi-modal transportation network. For this purpose, we developed the extended method based on entire path deletion method which was used in the static K-least time path algorithm. This method was applied to time dependent K-least time path algorithm to find k least time paths in order based on both time dependant mode-link travel time and transfer cost In particular, this algorithm find the optimal solution, easily describing transfer behavior, such as walking and waiting for transfer by applying a link-based time dependent label. Finally, we examined the verification and application of the Proposed algorithm through case study.

Damage detection of shear buildings through structural mass-stiffness distribution

  • Liang, Yabin;Li, Dongsheng;Song, Gangbing;Zhan, Chao
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • For structural damage detection of shear buildings, this paper proposes a new concept using structural element mass-stiffness vector (SEMV) based on special mass and stiffness distribution characteristics. A corresponding damage identification method is developed combining the SEMV with the cross-model cross-mode (CMCM) model updating algorithm. For a shear building, a model is assumed at the beginning based on the building's distribution characteristics. The model is updated into two models corresponding to the healthy and damaged conditions, respectively, using the CMCM method according to the modal parameters of actual structure identified from the measured acceleration signals. Subsequently, the structural SEMV for each condition can be calculated from the updated model using the corresponding stiffness and mass correction factors, and then is utilized to form a new feature vector in which each element is calculated by dividing one element of SEMV in health condition by the corresponding element of SEMV in damage condition. Thus this vector can be viewed as a damage detection feature for its ability to identify the mass or stiffness variation between the healthy and damaged conditions. Finally, a numerical simulation and the laboratory experimental data from a test-bed structure at the Los Alamos National Laboratory were analyzed to verify the effectiveness and reliability of the proposed method. Both simulated and experimental results show that the proposed approach is able to detect the presence of structural mass and stiffness variation and to quantify the level of such changes.

Model reduction techniques for high-rise buildings and its reduced-order controller with an improved BT method

  • Chen, Chao-Jun;Teng, Jun;Li, Zuo-Hua;Wu, Qing-Gui;Lin, Bei-Chun
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • An AMD control system is usually built based on the original model of a target building. As a result, the fact leads a large calculation workload exists. Therefore, the orders of a structural model should be reduced appropriately. Among various model-reduction methods, a suitable reduced-order model is important to high-rise buildings. Meanwhile, a partial structural information is discarded directly in the model-reduction process, which leads to the accuracy reduction of its controller design. In this paper, an optimal technique is selected through comparing several common model-reduction methods. Then, considering the dynamic characteristics of a high-rise building, an improved balanced truncation (BT) method is proposed for establishing its reduced-order model. The abandoned structural information, including natural frequencies, damping ratios and modal information of the original model, is reconsidered. Based on the improved reduced-order model, a new reduced-order controller is designed by a regional pole-placement method. A high-rise building with an AMD system is regarded as an example, in which the energy distribution, the control effects and the control parameters are used as the indexes to analyze the performance of the improved reduced-order controller. To verify its effectiveness, the proposed methodology is also applied to a four-storey experimental frame. The results demonstrate that the new controller has a stable control performance and a relatively short calculation time, which provides good potential for structural vibration control of high-rise buildings.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Range Estimating Performance Evaluation of the Underwater Broadband Source by Array Invariant (Array Invariant를 이용한 수중 광대역 음원의 거리 추정성능 분석)

  • Kim Se-Young;Chun Seung-Yong;Kim Boo-Il;Kim Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.305-311
    • /
    • 2006
  • In this paper the performance of a array invariant method is evaluated for source-range estimation in horizontally stratified shallow water ocean waveguide. The method has advantage of little computationally effort over existing source-localization methods. such as matched field processing or the waveguide invariant and array gain is fully exploited. And. no knowledge of the environment is required except that the received field should not be dominated by purely interference This simple and instantaneous method is applied to simulated acoustic propagation filed for testing range estimation performance. The result of range estimation according to the SNR for the underwater impulsive source with broadband spectrum is demonstrated. The spatial smoothing method is applied to suppress the effect of mutipath propagation by high frequency signal. The result of performance test for range estimation shows that the error rate is within 20% at the SNR above 10dB.

A study on the Pattern Recognition of the EMG signals using Neural Network and Probabilistic modal for the two dimensional Motions described by External Coordinate (신경회로망과 확률모델을 이용한 2차원운동의 외부좌표에 대한 EMG신호의 패턴인식에 관한 연구)

  • Jang, Young-Gun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.65-70
    • /
    • 1991
  • A hybrid model which uses a probabilistic model and a MLP(multi layer perceptron) model for pattern recognition of EMG(electromyogram) signals is proposed in this paper. MLP model has problems which do not guarantee global minima of error due to learning method and have different approximation grade to bayesian probabilities due to different amounts and quality of training data, the number of hidden layers and hidden nodes, etc. Especially in the case of new test data which exclude design samples, the latter problem produces quite different results. The error probability of probabilistic model is closely related to the estimation error of the parameters used in the model and fidelity of assumtion. Generally, it is impossible to introduce the bayesian classifier to the probabilistic model of EMG signals because of unknown priori probabilities and is estimated by MLE(maximum likelihood estimate). In this paper we propose the method which get the MAP(maximum a posteriori probability) in the probabilistic model by estimating the priori probability distribution which minimize the error probability using the MLP. This method minimize the error probability of the probabilistic model as long as the realization of the MLP is optimal and approximate the minimum of error probability of each class of both models selectively. Alocating the reference coordinate of EMG signal to the outside of the body make it easy to suit to the applications which it is difficult to define and seperate using internal body coordinate. Simulation results show the benefit of the proposed model compared to use the MLP and the probabilistic model seperately.

  • PDF

Bayesian ballast damage detection utilizing a modified evolutionary algorithm

  • Hu, Qin;Lam, Heung Fai;Zhu, Hong Ping;Alabi, Stephen Adeyemi
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • This paper reports the development of a theoretically rigorous method for permanent way engineers to assess the condition of railway ballast under a concrete sleeper with the potential to be extended to a smart system for long-term health monitoring of railway ballast. Owing to the uncertainties induced by the problems of modeling error and measurement noise, the Bayesian approach was followed in the development. After the selection of the most plausible model class for describing the damage status of the rail-sleeper-ballast system, Bayesian model updating is adopted to calculate the posterior PDF of the ballast stiffness at various regions under the sleeper. An obvious drop in ballast stiffness at a region under the sleeper is an evidence of ballast damage. In model updating, the model that can minimize the discrepancy between the measured and model-predicted modal parameters can be considered as the most probable model for calculating the posterior PDF under the Bayesian framework. To address the problems of non-uniqueness and local minima in the model updating process, a two-stage hybrid optimization method was developed. The modified evolutionary algorithm was developed in the first stage to identify the important regions in the parameter space and resulting in a set of initial trials for deterministic optimization to locate all most probable models in the second stage. The proposed methodology was numerically and experimentally verified. Using the identified model, a series of comprehensive numerical case studies was carried out to investigate the effects of data quantity and quality on the results of ballast damage detection. Difficulties to be overcome before the proposed method can be extended to a long-term ballast monitoring system are discussed in the conclusion.

Vibration Analysis of 300 mesh Soy Bean Crusher Based on Finite Element Method (유한 요소법에 의한 300 메쉬 콩 가루 분쇄기의 진동 해석)

  • Pratama, Pandu Sandi;Supeno, Destiani;Byun, Jae-Yeong;Woo, Ji-Hee;Lee, En-Suk;Nam, Mi-kyung;Hwang, Hyun-Ji;Sean, Keefe Dimas Harris;Lee, Kang-Sam;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.359-364
    • /
    • 2017
  • A machine such as bean crusher machine is subjected to different loads and vibration. Due to this vibration there will be certain deformations which affect the performance of the machine in adverse manner. This paper proposed a vibration analysis of bean crusher machine using ANSYS. The Finite Element Method (FEM) analysis is carried out to study the effect of vibration on the structure in order to ensure the safety. This work helps the machine developer make a better product at the early design stage with lower cost and faster development time. To do this, firstly, using Inventor, a CAD model is prepared. Secondly, the analysis is to be carried out using ANSYS 15. The modal analysis and random vibration analysis of the structure was conducted. The analysis shows that the proposed design was successfully shows the minimum deformation when the vibration was applied in normal condition.

Comparison of Projection-Based Model Order Reduction for Frequency Responses (주파수응답에 대한 투영기반 모델차수축소법의 비교)

  • Won, Bo Reum;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.933-941
    • /
    • 2014
  • This paper provides a comparison between the Krylov subspace method (KSM) and modal truncation method (MTM), which are typical projection-based model order reduction methods. The frequency responses are compared to determine the numerical accuracies and efficiencies. In order to compare the numerical accuracies of the KSM and MTM, the frequency responses and relative errors according to the order of the reduced model and frequency of interest are studied. Subsequently, a numerical examination shows whether a reduced order can be determined automatically with the help of an error convergence indicator. As for the numerical efficiency, the computation time needed to generate the projection matrix and the solution time to perform a frequency response analysis are compared according to the reduced order. A finite element model for a car suspension is considered as an application example of the numerical comparison.

An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube (임피던스 튜브 내에 설치된 평판의 음파투과해석)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • In this paper, derivation of the STL (Sound Transmission Loss) of a square plate installed in an impedance tube is discussed using an analytic method. Coupled motion of the plate vibration and acoustic field is considered. Vibration of the plate and pressure field inside the tube are expressed in terms of the infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results. When the boundary of the plate is clamped, vibration mode is assumed as a multiplication of the beam modes corresponding to the crosswise directions. The natural frequencies of the clamped plate are calculated using the Rayleigh-Ritz method. It is found that the STL shows a dip at the lowest natural frequency of the plate, and increases as the frequency decreases below the natural frequency. Comparison of the result in this paper with the STL obtained by measurements and FE computations in the reference shows an excellent agreement.