• Title/Summary/Keyword: modal frequency

Search Result 1,281, Processing Time 0.026 seconds

Structural health monitoring response reconstruction based on UAGAN under structural condition variations with few-shot learning

  • Jun, Li;Zhengyan, He;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.687-701
    • /
    • 2022
  • Inevitable response loss under complex operational conditions significantly affects the integrity and quality of measured data, leading the structural health monitoring (SHM) ineffective. To remedy the impact of data loss, a common way is to transfer the recorded response of available measure point to where the data loss occurred by establishing the response mapping from measured data. However, the current research has yet addressed the structural condition changes afterward and response mapping learning from a small sample. So, this paper proposes a novel data driven structural response reconstruction method based on a sophisticated designed generating adversarial network (UAGAN). Advanced deep learning techniques including U-shaped dense blocks, self-attention and a customized loss function are specialized and embedded in UAGAN to improve the universal and representative features extraction and generalized responses mapping establishment. In numerical validation, UAGAN efficiently and accurately captures the distinguished features of structural response from only 40 training samples of the intact structure. Besides, the established response mapping is universal, which effectively reconstructs responses of the structure suffered up to 10% random stiffness reduction or structural damage. In the experimental validation, UAGAN is trained with ambient response and applied to reconstruct response measured under earthquake. The reconstruction losses of response in the time and frequency domains reached 16% and 17%, that is better than the previous research, demonstrating the leading performance of the sophisticated designed network. In addition, the identified modal parameters from reconstructed and the corresponding true responses are highly consistent indicates that the proposed UAGAN is very potential to be applied to practical civil engineering.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Range Estimating Performance Evaluation of the Underwater Broadband Source by Array Invariant (Array Invariant를 이용한 수중 광대역 음원의 거리 추정성능 분석)

  • Kim Se-Young;Chun Seung-Yong;Kim Boo-Il;Kim Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.305-311
    • /
    • 2006
  • In this paper the performance of a array invariant method is evaluated for source-range estimation in horizontally stratified shallow water ocean waveguide. The method has advantage of little computationally effort over existing source-localization methods. such as matched field processing or the waveguide invariant and array gain is fully exploited. And. no knowledge of the environment is required except that the received field should not be dominated by purely interference This simple and instantaneous method is applied to simulated acoustic propagation filed for testing range estimation performance. The result of range estimation according to the SNR for the underwater impulsive source with broadband spectrum is demonstrated. The spatial smoothing method is applied to suppress the effect of mutipath propagation by high frequency signal. The result of performance test for range estimation shows that the error rate is within 20% at the SNR above 10dB.

A Study of Analytical Integrity Estimations for the Structure and Rotor System of an Emergency Diesel Generator (비상디젤발전기의 회전체 및 구조물 해석적 건전성 평가에 관한 연구)

  • Kim, Chae-Sil;Choi, Heon-Oh;Jung, Hoon-Hyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper describes an integrity evaluation method for emergency diesel generator(EDG) and rotor part of EDG. EDG is a very important equipment in the nuclear power plant(NPP). EDG supplies electricity to the safety-related equipments for the safety shut down of NPP in an emergency situation of earthquake. The safety of the rotor part of EDG is also important during seismic impact from earthquake. The finite element modelling of the EDG including rotor part was constructed. The modal analysis of EDG was firstly performed. The first natural frequency was calculated and revealed higher than the cutoff frequency of seismic spectrum. Then the stress analysis was done to compare with the allowable stress. The safety of the rotor part was investigated by the finite element analysis of the rotor and journal bearing interaction to find film thickness and critical speed. The seismic load was applied to rotor part in a manner that the load was a weighted static load. Analysis results showed that the maximum stress was within the range of allowable stress and the film thickness is larger than the permissible minimum thickness, and the critical speed was out of the operating speed. Hence, the structural and dynamic integrity of EDG could be confirmed by the numerical analysis method used in this paper. However, dynamic analysis of a rotating rotor and supporting bearing with the seismic impact needs to be investigated in a more rigorous method since the seismic load to the rotating part complicates the behavior of rotating system.

Multinomial Logit Modeling: Focus on Regional Rail Trips (다항로짓모형을 이용한 지역간 철도통행 연구)

  • Kim, Gyeong-Tae;Lee, Jin-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.1 s.94
    • /
    • pp.109-119
    • /
    • 2007
  • Increasingly, the emphasis in regional Passenger rail Planning is finding ways to more efficiently use existing facilities, with particular attention being Paid to Policies designed to spread Peak-Period travel demand more evenly throughout the week with consideration of train classification. In this context the individual's choice of time to travel is of crucial significance. This paper investigates the use of multinomial logit analysis to model ridership by rail classification using data collected for travel from Seoul to Busan during the one week in October 2004. The Particular model form that was successfully calibrated was the multinomial logit (MNL) model : it describes the choice mechanism that will Permit rail systems and operations to be planned on a more reliable basis. The assumption of independently and identically distributed(IID) error terms in the MNL model leads to its infamous independence from irrelevant alternatives (IIA) property. Relaxation of the IID assumption has been undertaken along a number or isolated dimensions leading to the development of the MNL model. For business and related rail travel patterns, the most important variables of choice were time and frequency to the chosen destination. The calibrated model showed high agreement between observed and Predicted market shares. The model is expected to be of use to railroad authorities in Planning and determining business strategies in the Increasingly competitive environment or regional rail transport.

Measurement of two-dimensional vibration and calibration using the low-cost machine vision camera (저가의 머신 비전 카메라를 이용한 2차원 진동의 측정 및 교정)

  • Kim, Seo Woo;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2018
  • The precision of the vibration-sensors, contact or non-contact types, is usually satisfactory for the practical measurement applications, but a sensor is confined to the measurement of a point or a direction. Although the precision and frequency span of the low-cost camera are inferior to these sensors, it has the merits in the cost and in the capability of simultaneous measurement of a large vibrating area. Furthermore, a camera can measure multi-degrees-of-freedom of a vibrating object simultaneously. In this study, the calibration method and the dynamic characteristics of the low-cost machine vision camera as a sensor are studied with a demonstrating example of the two-dimensional vibration of a cantilever beam. The planar image of the camera shot reveals two rectilinear and one rotational motion. The rectilinear vibration motion of a single point is first measured using a camera and the camera is experimentally calibrated by calculating error referencing the LDV (Laser Doppler Vibrometer) measurement. Then, by measuring the motion of multiple points at once, the rotational vibration motion and the whole vibration motion of the cantilever beam are measured. The whole vibration motion of the cantilever beam is analyzed both in time and frequency domain.

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Buffeting Response Correction Method based on Dynamic Properties of Existing Cable-Stayed Bridge (공용 사장교의 동적특성을 반영하는 버페팅 응답보정법)

  • Kim, Byeong Cheol;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.

Atmospheric Aerosol Optical Properties in the Korean Peninsula

  • Oh, Sung-Nam;Sohn, Byung-Ju;Chung, Hyo-Sang;Park, Ki-Jun;Park, Sang-Soon;Hyun, Myung-Suk
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.423-423
    • /
    • 2003
  • The radiative properties of atmospheric aerosol are determined by the mass and chemical characteristics, and optical properties such as aerosol optical depth (AOD), ngstr m parameter ( $\alpha$) and single scattering albedo (SSA). In particular these aerosol optical properties also determine surface temperature perturbation that may give some information in understanding the regional atmospheric radiative forcing. For understanding the radiative forcing and regional surce of aerosol, this paper summarizes and compares the aerosol optical properties results from and compares the atmospheric aerosol optical properties results from two different experiments: Anmyeon 2000 and Jeju 2001. Korea Global Atmosphere Watch Observatory (KGAWO) at Anmyeon island and ACE-Asia super-site at Gosan Jeju island have measured the radiations and aerosols since the year of 2000. The sites are located in the mid-west and south of Korea peninsula where it is strongly affected by the Asian dust coming from China region in every spring. Aerosol optical properties over both sites were measured through the ground-based sun and sky radiometers were analyzed for understanding the radiation and climate properties. Number concentration and chemical components of aerosol were additionally analyzed for the source estimation in the transportation. The frequency distributions of aerosol optical depth are rather narrow with a modal vaiue of 0.38 at both sites. However, the distributions of show one peak (1.13) at Jeju but two peaks (0.63 and 1.13) at Anmyeon. In the cases of Anmyeon, one peak around 0.63 corresponds to relatively dust-free cases, and the second peak around 1.13 characterizes the situation when Asian dust is presented. The correlation between AOD and resulted high correlation on the wide range with high values of optical depth at Anmyeon, otherwise a narrow range of with moderate to low AOD at Jeju. In dust free condition SSA decrease with waveleneth while in the presence of Asian dust SSA either stays neutral or increases slightly with wavelength. The change of surface temperature shows the stronger positive correlations with aerosol optical depth increase at Anmyeon than Jeju. In the chemical properties the aerosol are related to high concentrations in inorganic matters, SO$^4$, NO$_3$, CA2+ in fine and coarse.

  • PDF