• Title/Summary/Keyword: modal

Search Result 4,091, Processing Time 0.028 seconds

Controlled Degradation of Modal Fiber (모달섬유의 취화 특성)

  • Yoon, Nam Sik;Cho, Kwang Ho;Yoon, Suk Chun;Lim, Yong Jin
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.31-35
    • /
    • 1996
  • Modal fabric was pretreated with sodium hydroxide, sodium persulfate, and their combined mixture by pad-steaming procedure. The tearing strength of the pretreated modal fabric was measured for subsequent microfibrillation. The solubility of modal fiber in sodium hydroxide solution was highest at 10 % concentration of sodium hydroxide. Extended steaming of the modal fabric padded with 6% sodium hydroxide solution did not reduce the tearing strength appreciably. 2% sodium persulfate pretreatment greatly reduced the tearing strength of modal fabric within 7 minutes of steaming time. The pretreatment with combined composition of sodium hydroxide and sodium persulfate brought about stable reduction in tearing strength within 1 minute of steaming time, which would be appricable to the continuous pretreatment of modal fabric for microfibrillation. Microfibrillation behavior of the pretreated modal fabric was tested also.

  • PDF

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao;Yu, Jingjun;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2019
  • This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.

Bridge modal identification based on frequency variation caused by a parked vehicle

  • He, Wen-Yu;Ren, Wei-Xin;Wang, Quan;Wang, Zuo-Cai
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.413-421
    • /
    • 2022
  • Modal parameters are the main dynamic characteristics of bridge. This study aims to propose an innovative route to estimate the modal parameters for bridges by using a parked vehicle in which mode shapes with high accuracy and spatial resolution are identified by frequency measurement. Based on the theory of dynamic modification and modal identification, the mathematical formulation between the parked mass induced frequency variation and the modal parameters of a bridge is derived. Then this mathematical formulation is extended to a parked vehicle-bridge system. The arithmetic and processes for estimating the modal parameters based on the identified frequency variation of the vehicle-bridge systems when the vehicle locates at sequentially arranged positions are presented. Finally the proposed method is applied to several simulated bridges of different types. The results indicate that it can estimate the modal parameters with high accuracy and efficiency.

Definition and calculation method of modal effective mass of asymmetric fluid-structure interaction system for seismic analysis

  • Yong-Hwa Heo;Jong-Oh Sun;Gyeong Ho Kim;Yeonseok Choo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4307-4316
    • /
    • 2023
  • In this paper, modal effective mass for asymmetric fluid-structure interaction system is defined and equations for its calculation is derived. To establish consistency, modal effective mass in symmetric structure only system is briefly reviewed, followed by a definition of the modal effective mass in asymmetric system. The equations for calculating modal effective mass in asymmetric system are derived by utilizing the properties of left and right eigenvectors. To simplify the equations, the assumption is made that the mass matrix is only affected by the fluid. The simplified equation is then compared to the equation already used in ANSYS. Finally, the validity of the modal effective mass definition and derivation in this paper is demonstrated through a simple example.

The application of modal filters for damage detection

  • Mendrok, Krzysztof;Uhl, Tadeusz
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.115-133
    • /
    • 2010
  • A modal filter is a tool used to extract the modal coordinates of each individual mode from a system's output. This is achieved by mapping the response vector from the physical space to the modal space. It decomposes the system's responses into modal coordinates, and thus, on the output of the filter, the frequency response with only one peak corresponding to the natural frequency to which the filter was tuned can be obtained. As was shown in the paper (Deraemecker and Preumont 2006), structural modification (e.g. a drop in stiffness or mass due to damage) causes the appearance of spurious peaks on the output of the modal filter. A modal filter is, therefore, a great indicator of damage detection, with such advantages as low computational effort due to data reduction, ease of automation and lack of sensitivity to environmental changes. This paper presents the application of modal filters for the detection of stiffness changes. Two experiments were conducted: the first one using the simulation data obtained from the numerical 7DOF model, and the second one on the experimental data from a laboratory stand in 4 states of damage.

Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams

  • Shariatmadar, H.;Mirhaj, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.65-79
    • /
    • 2011
  • Concrete hydraulic structures such as: Dams, Intake Towers, Piers and dock are usually recognized as" Vital and Special Structures" that must have sufficient safety margin at critical conditions like when earthquake occurred as same as normal servicing time. Hence, to evaluate hydrodynamic pressures generated due to seismic forces and Fluid-Structure Interaction (FSI); introduction to fluid-structure domains and interaction between them are inevitable. For this purpose, first step is exact modeling of water-structure and their interaction conditions. In this paper, the basic equation involved the water-structure-foundation interaction and the effective factors are explained briefly for concrete hydraulic structure types. The finite element modeling of two concrete gravity dams with 5 m, 150 m height, reservoir water and foundation bed rock is idealized and then the effects of fluid domain and bed rock have been investigated on modal characteristic of dams. The analytical results obtained from numerical studies and modal analysis show that the accurate modeling of dam-reservoir-foundation and their interaction considerably affects the modal periods, mode shapes and modal hydrodynamic pressure distribution. The results show that the foundation bed rock modeling increases modal periods about 80%, where reservoir modeling changes modal shapes and increases the period of all modes up to 30%. Reservoir-dam-foundation interaction increases modal period from 30% to 100% for different cases.

Robustness of Independent Modal Space Control for Parameter and Modal Filter Errors (파라메터오차 및 모달필터오차에 대한 독립모달공간 제어기법의 강인성 해석)

  • Hwang, Jai-Hyuk;Kim, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3549-3559
    • /
    • 1996
  • In this study, the effect of parameter and modal filter errors on the vibration control characteristics of flexible structures is analyzed for IMSC ( Independent Modal Space Control). If the control force is designed on the basis of the mathematical model with the parameter and modal filter errors, the closed-loop performance of the vibration control system will be degraded depending on the magnitude of the errors. An asymptotic stability condition of the system with parameter and modal filter errors has more significant effect on the stability condition of the system with parameter and modal filter errors has been drived using Lyapunov approach. It has been found that modal filter error has more significant effect on the stability of closed-loop system than parameter error does. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator thchniques.

Influence of infill walls on modal expansion of distribution of effective earthquake forces in RC frame structures

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.437-449
    • /
    • 2020
  • It is quite apparent that engineering concerns related to the influence of masonry infills on seismic behavior of reinforced concrete (RC) structures is likely to remain relevant in the long term, as infill walls maintain their functionalities in construction practice. Within this framework, the present paper mainly deals with the issue in terms of modal expansion of effective earthquake forces and the resultant modal responses. An adequate determination of spatial distribution of effective earthquake forces over the height of the building is highly essential for both seismic analysis and design. The possible influence of infill walls is investigated by means of modal analyses of two-, three-, and four-bay RC frames with a number of stories ranging from 3 to 8. Both uniformly and non-uniformly infilled frames are considered in numerical analyses, where infill walls are simulated by adopting the model of equivalent compression strut. Consequently, spatial distribution of effective earthquake forces, modal static base shear force response of frames, modal responses of story shears from external excitation vector and lateral floor displacements are obtained. It is found that, infill walls and their arrangement over the height of the frame structure affect the spatial distribution of modal inertia forces, as well as the considered response quantities. Moreover, the amount of influence varies in stories, but is not very dependent to bay number of frames.

Effect of boundary conditions on modal parameters of the Run Yang Suspension Bridge

  • Li, Zhijun;Li, Aiqun;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.905-920
    • /
    • 2010
  • Changes in temperature, loads and boundary conditions may have effects on the dynamic properties of large civil structures. Taking the Run Yang Suspension Bridge as an example, modal properties obtained from ambient vibration tests and from the structural health monitoring system of the bridge are used to identify and evaluate the modal parameter variability. Comparisons of these modal parameters reveal that several low-order modes experience a significant change in frequency from the completion of the bridge to its operation. However, the correlation analysis between measured modal parameters and the temperature shows that temperature has a slight influence on the low-order modal frequencies. Therefore, this paper focuses on the effects of the boundary conditions on the dynamic behaviors of the suspension bridge. An analytical model is proposed to perform a sensitivity analysis on modal parameters of the bridge concerning the stiffness of expansion joints located at two ends of bridge girders. It is concluded that the boundary conditions have a significant influence on the low-order modal parameters of the suspension bridge. In addition, the influence of vehicle load on modal parameters is also investigated based on the proposed model.

Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping

  • Yamaguchi, Hiroki;Matsumoto, Yasunao;Yoshioka, Tsutomu
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.523-541
    • /
    • 2015
  • Structural health monitoring of steel truss bridge based on changes in modal properties was investigated in this study. Vibration measurements with five sensors were conducted at an existing Warren truss bridge with partial fractures in diagonal members before and after an emergency repair work. Modal properties identified by the Eigensystem Realization Algorithm showed evidences of increases in modal damping due to the damage in diagonal member. In order to understand the dynamic behavior of the bridge and possible mechanism of those increases in modal damping, theoretical modal analysis was conducted with three dimensional frame models. It was found that vibrations of the main truss could be coupled internally with local vibrations of diagonal members and the degree of coupling could change with structural changes in diagonal members. Additional vibration measurements with fifteen sensors were then conducted so as to understand the consistency of those theoretical findings with the actual dynamic behavior. Modal properties experimentally identified showed that the damping change caused by the damage in diagonal member described above could have occurred in a diagonal-coupled mode. The results in this study imply that damages in diagonal members could be detected from changes in modal damping of diagonal-coupled modes.