• Title/Summary/Keyword: mobility Matrix

Search Result 150, Processing Time 0.028 seconds

The Transport Phenomena of Some Solutes through the Copolymer Membranes of 2-hydroxyethylmethacrylate (HEMA) with Selected Hydrophobic Monomers

  • Kim, Whan-Gun;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.128-131
    • /
    • 1985
  • A series of copolymer membranes of 2-hydroxyethylmethacrylate (HEMA) with selected hydrophobic monomers were prepared without crosslinking agents. The equilibrium water content, the partition coefficient, and the permeability of the solutes such as urea, methylurea, 1,3-di-methylurea, and acetamide via these membranes were measured. The partition coefficient data show that as the hydrophobicity of solutes increased, the partition of solutes were dictated by hydrophobic interaction between solute and polymer matrix. Diffusion coefficients obtained in these experiments decrease as the water content of polymer membrane decreases. This decrease is blunt as the excess heat capacities, ${\phi}C^0_p$ (excess) in aqueous solution at infinite dilution of solute increases. To investigate the relationship between water content and diffusion coefficient, the results of the diffusion experiments were examined in light of a free-volume model of diffusive transport. The remarkable increase of urea mobility in the polymer network containing relatively larger bulk water can be considered as water structure breaking effect.

Plasticization in Unclustered Poly(methyl methacrylate) Ionomers

  • 김준섭;김희석;Adi Eisenberg
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.625-628
    • /
    • 1998
  • The dynamic mechanical properties of the unclustered cesium neutralized poly(methyl methacrylate-co-methacrylic acid) ionomers plasticized with three different plasticizers of low molecular weight were investigated. It was found that the effectiveness of the plasticization followed the order: glycerol (Gly) 4-decylaniline (4DA) >dioctyl phthalate (DOP). For the ionomer plasticized with Gly, the only effect was a significant decrease in the Tg. Thus it is concluded that the polar plasticizer not only increases the mobility of the ionomer but also dissolves the ionic groups. In the case of the 4DA-plasticized ionomer, both a drastic decrease in the Tg and the appearance of a second glass transition were observed. Therefore, it is suggested that the nonpolar 4DA molecules partition evenly in the poly(methyl methacrylate) matrix and cluster phases via hydrogen bonding between the aniline group of the plasticizer and the carbonyl groups of the ionomer. As a result, the Tg is lowered, multiplets can form, and the material behaves like a clustered ionomer.

Mobility of Microplastics in Subsurface Environments: Current Knowledge and Perspectives (지중환경에서 미세플라스틱의 이동성에 대한 고찰)

  • Kim, Youn-Tae;Han, Weon Shik;Yoon, Hye-On
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • Plastics have become essential materials in human life for several decades. Meanwhile, the inadvertent spread of plastic debris from the use of many plastic products has raised global environmental concerns. The risk of microplastics in subsurface environment has received little attention because soil is considered to confine microplastics within the matrix. However, the concentration of microplastics in soil unavoidably increased as a result of an increase in plastic production and use. Based on lab experiments, several researches claimed that microplastics possibly penentrate soil layers. Recently, a few researches reported the occurrence of microplastics in groundwater. This study reviewed the recent reports of microplastic occurrences in soil and groundwater, and the modeling studies for simulating transport of microplastics. Additionally, the difficulties and limits in microplastics researches in soil and groundwater are discussed. Finally, several perspectives on microplastic studies in subsurface environment are suggested.

A Study on Low Temperature Sequential Lateral Solidification(SLS) Poly-Si Thin Film Transistors(TFT′s) with Molybdenum Gate (Molybdenum 게이트를 적용한 저온 SLS 다결정 TFT′s 소자 제작과 특성분석에 관한 연구)

  • 고영운;박정호;김동환;박원규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.235-240
    • /
    • 2003
  • In this paper, we present the fabrication and the characteristic analysis of sequential lateral solidification(SLS) poly-Si thin film transistors(TFT's) with molybdenum gate for active matrix liquid displays (AMLCD's) pixel controlling devices. The molybdenum gate is applied for the purpose of low temperature processing. The maximum processing temperature is 55$0^{\circ}C$ at the dopant thermal annealing step. The SLS processed poly-Si film which is reduced grain and grain boundary effect, is applied for the purpose of electrical characteristics improvements of poly-Si TFT's. The fabricated low temperature SLS poly-Si TFT's had a varying the channel length and width from 10${\mu}{\textrm}{m}$ to 2${\mu}{\textrm}{m}$. And to analyze these devices, extract electrical characteristic parameters (field effect mobility, threshold voltage, subthreshold slope, on off current etc) from current-voltage transfer characteristics curve. The extract electrical characteristic of fabricated low temperature SLS poly-Si TFT's showed the mobility of 100~400cm$^2$/Vs, the off current of about 100pA, and the on/off current ratio of about $10^7$. Also, we observed that the change of grain boundary according to varying channel length is dominant for the change of electrical characteristics more than the change of grain boundary according to varying channel width. Hereby, we comprehend well the characteristics of SLS processed poly-Si TFT's witch is recrystallized to channel length direction.

Development and Performance Evaluation of Radial Exhaust Multi-port System for Real-time Particle Size Distribution Measurement (실시간 입자분포 측정을 위한 Radial Exhaust Multi-port System의 개발 및 성능평가)

  • Lee, Hong Ku;Lee, Yang-Woo;Jeon, Ki Soo;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.133-137
    • /
    • 2013
  • Measuring particle size distribution is one of the primary concerns in aerosol studies. For a nano-particle size distribution measurement, many scientists use a combination of a differential mobility analyzer (DMA) and a condensation particle counter (CPC) system, which is a called scanning mobility particle sizer (SMPS). Although it has a very high particle size resolution, some issues still remain. These problems include residence time between a DMA and a CPC, discontinuity of a CPC, and disturbance due to long scanning time during the precise measurement of particles. In particular, long scanning time is not adequate for measuring particle size distribution since the particle concentration is changing during the measurement. In this study, we developed radial exhaust multi-port system (REM-system) with no scanning time and high resolution to measure real-time particle size distribution. As a result of the REM-system performed using mono-disperse particle, it is expected that this system will be suitable for measuring continuously changing aerosol. If the counting efficiency of multi-condensation particle counter (M-CPC) and data inversion matrix are completed, REM-system will be a very adequate system for unsteady aerosol, which changes for SMPS scanning time.

High Mobility Group Box 1 Protein Is Methylated and Transported to Cytoplasm in Clear Cell Renal Cell Carcinoma

  • Wu, Fei;Zhao, Zuo-Hui;Ding, Sen-Tai;Wu, Hai-Hu;Lu, Jia-Ju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5789-5795
    • /
    • 2013
  • Background: The high mobility group box 1 (HMGB1) protein is a widespread nuclear protein present in most cell types. It typically locates in the nucleus and functions as a nuclear cofactor in transcription regulation. However, HMGB1 can also localize in the cytoplasm and be released into extracellular matrix, where it plays critical roles in carcinogenesis and inflammation. However, it remains elusive whether HMGB1 is relocated to cytoplasm in clear cell renal cell carcinoma (ccRCC). Methods: Nuclear and cytoplasmic proteins were extracted by different protocols from 20 ccRCC samples and corresponding adjacent renal tissues. Western blotting and immunohistochemistry were used to identify the expression of HMGB1 in ccRCC. To elucidate the potential mechanism of HMGB1 cytoplasmic translocation, HMGB1 proteins were enriched by immunoprecipitation and analyzed by mass spectrometry (MS). Results: The HMGB1 protein was overexpressed and partially localized in cytoplasm in ccRCC samples (12/20, 60%, p<0.05). Immunohistochemistry results indicated that ccRCC of high nuclear grade possess more HMGB1 relocation than those with low grade (p<0.05). Methylation of HMGB1 at lysine 112 in ccRCC was detected by MS. Bioinformatics analysis showed that post-translational modification might affect the binding ability to DNA and mediate its translocation. Conclusion: Relocation of HMGB1 to cytoplasm was confirmed in ccRCC. Methylation of HMGB1 at lysine 112 might the redistribution of this cofactor protein.

Replication origins oriGNAI3 and oriB of the mammalian AMPD2 locus nested in a region of straight DNA flanked by intrinsically bent DNA sites

  • Balani, Valerio Americo;De Lima Neto, Quirino Alves;Takeda, Karen Izumi;Gimenes, Fabricia;Fiorini, Adriana;Debatisse, Michelle;Fernandez, Maria Aparecida
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.744-749
    • /
    • 2010
  • The aim of this work was to determine whether intrinsically bent DNA sites are present at, or close to, the mammalian replication origins oriGNAI3 and oriB in the Chinese hamster AMPD2 locus. Using an electrophoretic mobility shift assay and in silico analysis, we located four intrinsically bent DNA sites (b1 to b4) in a fragment that contains the oriGNAI3 and one site (b5) proximal to oriB. The helical parameters show that each bent DNA site is curved in a left-handed superhelical writhe. A 2D projection of 3D fragment trajectories revealed that oriGNAI3 is located in a relatively straight segment flanked by bent sites b1 and b2, which map in previously identified Scaffold/Matrix Attachment Region. Sites b3 and b4 are located approximately 2 kb downstream and force the fragment into a strong closed loop structure. The b5 site is also located in an S/MAR that is found just downstream of oriB.

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

Effect of Salt Concentration on the Glass Transition Temperature and Ionic Conductivity of Poly(ethylene glycol)-Polyurethane/$LiClO_4$ Complexes

  • Huh, Pil-Ho;Park, Myung-Geun;Jo, Nam-Ju;Lee, Jin-Kook;Lee, Jang-Oo;Wongkang Yang
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.422-426
    • /
    • 2004
  • Solid polymer electrolytes based on poly(ethylene glycol)-polyurethane (PEG-PU) complexed with LiClO$_4$ salt have been prepared by the solvent casting method. A PEG-PU material (PEG:4,4'-diphenylmethane diisocyanate: l,4-butanediol = 1:2:1) was synthesized through a typical two-step condensation reaction. We investigated the effects of the salt concentration on the ionic conductivity ($\sigma$) and the glass transition temperature (T$_{g}$ ) of the complex electrolytes by using alternating current impedance spectroscopy, differential scanning calorimetry, and dynamic mechanical thermal analysis. The measured values of both $\sigma$ and T$_{g}$ exhibited similar tendencies in that they had maxima within the range studied, probably because of two opposite effects, i.e., the increased number of carrier ions and the decreased chain mobility (or increased T$_{g}$ ) caused by the increase in the salt concentration. The highest conductivity, on the order of 2.43 ${\times}$ 10$^{6}$ S$cm^{-1}$ /, was obtained at an [O]/[Li$^{+}$] ratio of ca. 16 (0.92 ㏖ salt per kg of matrix polymer).

The Fate and Factors Determining Arsenic Mobility of Arsenic in Soil-A Review

  • Lee, Kyo Suk;Shim, Ho Young;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • Arsenic which is found in several different chemical forms and oxidation states and causes acute and chronic adverse health effects is a toxic trace element widely distributed in soils and aquifers from both geologic and anthropogenic sources. Arsenic which has a mysterious ability to change color, behavior, reactivity, and toxicity has diverse chemical behavior in the natural environment. Arsenic which has stronger ability to readily change oxidation state than nitrogen and phosphorus due to a consequence of the electronic configuration of its valence orbitals with partially filled states capable of both electron donation and acceptance although the electronegativity of arsenic is greater than that of nitrogen and similar to that of phosphorus. Arsenate (V) is the thermodynamically stable form of As under aerobic condition and interacts strongly with solid matrix. However, it has been known that adsorption and oxidation reactions of arsenite (III) which is more soluble and mobile than As(V) in soils are two important factors affecting the fate and transport of arsenic in the environment. That is, the movement of As in soils and aquifers is highly dependent on the adsorption-desorption reactions in the solid phase. This article, however, focuses primarily on understanding the fate and speciation of As in soils and what fate arsenic will have after it is incorporated into soils.