본 연구에서는 생분해성 고분자인 polybutylene succinate-adipate (PBS-AD)에 옥수수 전분을 충전제로 첨가한 생분해성 복합재의 열적성질에 대해 고찰하였다. 열분석은 온도에 대한 함수로서 복합재 물질의 화학적 성질과 중량 감소율을 측정할 수 있는 분석적인 방법으로 사용되고 었다. 옥수수 전분의 열안정성은 순수한 생분해성 고분자인 PBS-AD보다 낮았다. 옥수수 전분의 함량이 증가할수록 생분해성 복합재의 열안정성과 열분해 온도는 감소하였고 회분의 함량은 증가하였다. 이것은 생분해성 복합재의 계면에서의 결합려이 옥수수 전분의 혼합비율이 증가할수록 감소하였기 때문이다. 옥수수 전분의 함량이 증가할수록 생분해성 복합재의 유리전이온도(Tg) 와 용융온도(Tm) 에는 큰 변화가 없었다. 옥수수 전분이 혼합된 생분해성 고분자 복합재의 저장 탄성율(E')과 손실 탄성율(E") 값은 PBS-AD보다 높았다. 이 결과는 옥수수 전분의 첨가로 인하여 생분해성 복합재의 강성이 증가하였기 때문이다. 고온에서 생분해성 고분자 복합재의 감소된 저장 탄성율 값은 온도가 증가할수록 고분자 사슬의 운동성이 증가하기 때문이다. 위의 결과들로부터, 옥수수 전분이 생분해성 고분자 복합재를 제조하는데 충전제로서 사용이 가능하다고 예상할 수 있었으며 옥수수 선분과 생분해성 고분자의 계면에서의 결합력을 향상시키기 위하여 결합제의 사용이 요구된다.
수평 전기로에서 $ZnIn_2Se_4$ 단결정을 합성하여 HWE(Hot Wall Epitaxy)방법으로 $ZnIn_2Se_4$ 단결정 박막을 반절연성 GaAs(100) 기판에 성장시켰다. $ZnIn_2Se_4$ 단결정 박막의 성장 조건을 증발원의 온도 $630^{\circ}C$, 기판의 온도 $400^{\circ}C$였고 성장 속도는 0.5 $\mu m/hr$였다. $ZnIn_2Se_4$ 단결정 박막의 결정성의 조사에서 10K에서 광발광(photoluminescence) 스펙트럼이 682.7nm ($1.816{\underline{1}}eV$)에서 exciton emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중결정 X-선 요통곡선(DCRC)의 반폭치(FWHM)도 128 arcsec로 가장 작아 최적 성장 조건임을 알 수 있었다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농노와 이동도는 293 K에서 각각 $9.41\times10^{16}/cm^{-3}$, $292cm^2/V{\cdot}s$였다. $ZnIn_2Se_4$/SI(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293 K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 varshni공식에 따라 계산한 결과 $E_g(T)=1.8622\;eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$ 이었으며 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting energy ${\Delta}cr$값이 182.7meV이며 spin-orbit energy ${\Delta} so$값은 42.6meV임을 확인하였다. 10 K일 때 광전류 봉우리들은 n= 1, 27일때 $A_{1}-$, $B_{1}-$와 $C_{27}-exciton$ 봉우리임을 알았다.
수평 전기로에서 $CdIn_2S_4$ 다결정을 합성하여 HWE(Hot Wall Epitaxy)방법으로 $CdIn_2S_4$ 단결정 박막을 반절연성 GaAs (100)기판에 성장시켰다. $CdIn_2S_4$ 단결정 박막의 성장 조건은 증발원의 온도 $630^{\circ}C$, 기판의 온도 $420^{\circ}C$였고 성장 속도는 $0.5\;{\mu}m/hr$였다. $CdIn_2S_4$ 단결정 박막의 결정성의 조사에서 10 K에서 광발광(photoluminescence) 스펙트럼이 463.9 nm (2.6726 eV)에서 exciton emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중 결정 X-선 요동 곡선(DCRC)의 반폭치(FWHM)도 127 arcsec로 가장 작아 최적 성장 조건임을 알 수 있었다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293K에서 각각 $9.01{\times}10^{16}/cm^3$, $219\;cm^2/V{\cdot}s$였다. $CdIn_2S_4$/SI(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 Varshni 공식에 따라 계산한 결과 $2.7116eV-(7.74{\times}10^{-4}eV/K)T^2$/(T+434K)이었으며 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting ${\Delta}cr$값이 0.1291 eV이며 spin-orbit ${\Delta}so$값은 0.0248 eV임을 확인하였다. 10K일 때 광전류 봉우리들은 n = 1일때 $A_1$-, $B_1$-와 $C_1$-exciton 봉우리임을 알았다.
지난 10년 동안 유전체 내부에 형성된 나노미터 크기의 규소알갱이는 발광센터로서 주목 받아왔다 나노미터 크기인 결정질 규소의 엑시토닉 전자-홀의 쌍들이 발광결합에 기여한다고 여겨진다. 그러나 규소결정에 존재하는 여러가지 결함들은 비발광 천이의 경로가 되어 나노규소결접립의 발광천이와 경쟁하여 발광효율을 저하시키는 요인이 된다. 이러한 결정 결함들은 고온 열처리과정에서 대부분 소멸되나 $1000^{\circ}C$ 이상의 공정 에서도 나노규소와 유전체의 계면에 존재하는 결함들은 나노규소결정립의 발광을 억제하게 된다. 일반적으로 수소로서 규소결정립의 계면을 마감처리하게 되면 규소결정립의 발광효율이 획기적으로 향상되나 불행하게도 매질 내 수소의 높은 이동성으로 말미암아 후속 열처 리 과정에서 수소마감효과는 쉽게 손실된다. 따라서 본 연구에서는 온도가역적인 수소 대신 인을 이온주입 방법으로 첨가하여 수소와 같은 계면 마감효과를 얻으며 또한 후속 고온공정 에 대한 내구력을 증대시켰다. 모재인 산화규소 기판에 400keV, $1\times10^{17}\; Si/cm^2$와 그 주위에 균일한 함량을 도핑하기 위하여 다중에너지의 인을 주입하였다. 규소와 인을 이온주입 후 Ar 분위기에서 $1100^{\circ}C$ , 두 시간의 후열처리를 통하여 규소결정립을 형성하였으며 향상된 내열효과를 시험하기 위하여 Ar 분위기에서 $1000^{\circ}C$까지 열처리하였다. 인으로 마감된 나노미터 크기인 규소 결정립의 향상된 광-발광(PL)효과와 감쇄시간, 그리고 발광파장의 변화에 대하여 논의하였다.
사용후핵연료의 건식 재가공을 위한 핵연료 원격 제조공정중 분말제조를 위한 산화 및 OREOX(산화 환원공정)열처리 공정으로부터 $^{85}Kr$ 및 $^{14}C$ 핵분열기체의 방출거동을 정량적으로 평가하였다. 특히 사용후핵연료의 평균 연소도가 $27,000{\sim}65,000\;MWd/tU$ 범위내에서 연소도 변화에 따른 핵분열기체의 방출 분율은 측정한 실험결과와 ORIGEN 코드로부터 계산된 초기 inventory를 상호 비교하여 구하였다. $500^{\circ}C$ 1차 산화공정(voloxidation)에서 $^{85}Kr$ 및 $^{14}C(^{14}CO_2)$의 시간에 따른 방출거동은 $UO_2$ 핵연료의 $U_3O_8$으로의 분말화 정도와 밀접한 관련이 있는 것으로 보이며, 입계(grain-boundary)에 분포된 핵분열기체가 대부분 방출되는 것으로 여겨진다. 산화분말을 이용한 OREOX 공정으로부터 핵분열기체의 높은 방출율은 $700^{\circ}C$의 환원공정에서 온도 증가에 의한 기체 확산 및 $UO_2$으로의 환원에 의한 U 원자 이동성 증가에 의존하며 주로 inter-grain 및 intra-grain에 분포된 핵분열기체가 방출된 것으로 판단된다. 일차 산화공정시 $^{85}Kr$ 및 $^{14}C$ 핵분열기체의 방출 분율은 핵 연료 연소도가 증가함에 따라 높게 나타났고 방출 분율 범위는 총 inventory의 $6{\sim}12%$정도며, 산화분말의 OREOX 공정처리시 잔류 핵분열기체 대부분이 방출되는 것으로 보인다. 아울러 사용후핵 연료로부터 핵분열기체의 제거를 위해서는 고온 환원분위기보다는 산화에 의한 분말화가 더 효과적인 것으로 여겨진다.
농약의 식물 엽면 침투성에 관하여 보고한 국내외 논문을 조사하여 최근에 빈번하게 사용되고 있는 침투율 측정법과, 계면활성제에 의해서 유도되는 농약의 엽면 침투기작에 관한 연구 동향을 고찰하였다. 농약의 식물 엽면 침투성 연구에는 생물검정법, 식물 잎이나 cuticular membrane을 이용하는 방사능 추적 기술이 주로 이용되고 있다. 가장 최근에는 수용성 색소 Congo Red를 추적물질로 이용하는 새로운 침투율 측정법이 제안되었다. 농약의 엽면 침투에 있어서 최대의 장벽은 epicuticular wax와 cuticular wax를 포함하는 잎 표면의 왁스층이며, 일부 연구자들은 이를 limiting skin이라 부르기도 한다. 농약의 몰부피(molar volume), 수용해도 및 분배계수 등의 이화학적 성질은 식물 엽면 침투성에 영향을 미치지만 제한적인 상관관계를 나타낼 뿐이며, 일반화할 수 있는 어떠한 상관관계도 아직 발견되지 않았다. Polyoxyethylene을 친수기로 가지는 지방족 알콜 계면활성제들은 많은 농약에 대하여 좋은 침투성 증진제로 알려져 있다. 침투성 증진제로 사용되는 계면활성제가 농약의 엽면 침투성을 증진하는 데에는 계면활성, 가용화 능력, 흡습성 및 미셀생성임계농도 등 계면활성제 고유의 성질이 크게 관여하는 것 같지는 않다. 최근의 연구에서 침투성 증진 효과가 큰 계면활성제는 식물의 왁스층에 쉽게 흡수되어 가역적으로 왁스층의 유동성을 증가시키는 가소제 역할(plasticizing effect)을 한다는 것이 밝혀졌다. 계면활성제가 왁스층에 먼저 침투하면 wax층의 유동성이 증가하고, 이로 인하여 wax층 내에서 농약의 이동성과 분배계수가 달라짐으로써 농약의 엽면 침투 속도가 변화한다는 것이다. 그러나 계면활성제의 친유기 부분인 지방족 알콜의 탄소수와 친수기의 ethylene oxide 부가중합도가 농약의 침투성 증진에서 어떠한 역할을 하는지는 상세히 밝혀져 있지 않다. 다만 계면활성제 자체의 엽면 침투 속도가 농약의 침투속도와 깊은 관련이 있을 것으로 추정되고 있다.
토양 중 중금속들의 이동성 및 식물흡수와의 관계를 알기 위하여 만경강 중류에서는 전주공단의 공단폐수 및 생활하수가 유입되는 전주천의 영향을 주로 받고 하류에서는 익산지역의 공단폐수 및 생활하수가 유입되고 있는 만경강유역을 중심으로 토양시료 채취년도 (1982년과 1990년) 별 및 표 ${\cdot}$ 심토별로 추출방법을 달리하여 토양 중 중금속 함량 및 존재 형태를 분류하고, 1990년도 토양 시료 중 중금속 함량과 1990년도에 채취한 수도체 중 부위별 중금속 함량과의 상관관계를 조사 분석한 결과는 다음과 같다. 1. 각 중금속별 전 함량은 1990년 토양 중 함량이 1982년도 토양중 함량보다 표토에서 Cd가 3%, Zn 29%, Cu가 59%, Pb가 8% 증가하였고, 심토에서는 Cd가 8%, Zn 50% Cu가 91%, Pb가 8%로 증가하여 증가 비율이 Cu > Zn > Pb > Cd의 순서를 나타내었으며, Cd의 경우 연속 추출방식에 의한 화합물 형태는 유기물 결합형 > 묽은 산 추출형= Fe-Mn 산화물형 > 치환성 > 규산염결합형 순이었고 특히, 유기물 결합형태가 표토에서 $46.62{\sim}48.08%$ 심토에서 $41.18{\sim}50.18%$로 그 분포가 가장 많았다. 2. 산화물 및 규산염내에 결합되어 있어 비이동성인 중금속 비율은 표토에서 Cd가 21.25%, Pb가 35.98%, Cu가 74.18%, Zn이 82.12%였고, 치환성, 묽은산 추출형 및 유기적 결합형 등의 이동성은 17.88% 이상으로 Cd이 78.75%, Pb이 64.02%, Cu가 25.82%, Zn이 17.88%순으로 나타났다. 3. 표토 중에서 Pb를 제외하면 치환성, 묽은산 추출형태의 Cd, Zn, Cu등이 수도체의 엽신, 줄기, 화서축 중에 이들 농도를 높이는 상관성이 있었으나 심토 중 중금속 함량과 수도체 부위별 함량 간에는 모든 부위에서 유의적 상관성이 없었다.
기존의 오염물질을 제거하는 많은 화학적-물리적 정화 방법은 고비용과 오랜 시간을 요구하는 처리 과정 등의 단점을 갖고 있는 경우가 많았다. 따라서 흙과 수(水)환경내로 유입된 오염물질을 빠른 시간 내에 제거 할 수 있는 대안이 요구 되었다. 흙에 유출된 화합 물질 중 상당양은 흙에 의해 격리, 구속되고 이로 인해 일단 구속된 오염물질은 물과 유기 용매에 의해서도 잘 추출되지 않는 것으로 보고 되고 있다. 이러한 흙에 의한 오염물질의 비유동성(immobilization) 과정은 오염물질의 제거 기술의 대안으로 평가 될 수 있다. 기존 연구자들의 연구 결과, 화학적 혹은 물리적 반응 작용을 통해 오염물질을 흙을 구성하는 물질에 구속할 수 있음이 증명되었다. 이러한 과정 중 환경적 측면에서 볼 때, 화학적 반응이 더 우수하다 할 수 있다. 이는 강한 공유결합(covalent bonds)으로 연결될 경우 미생물의 활동이나 화학 처리로도 이를 분리하기 어렵기 때문이다. 리그닌(lignin) 분해에서 발생하는 휴믹(humic) 물질 등이 안정 된 화학적 연결을 통해 흙 매질 내에 오염물질과 결합하는 대표적 물질이다. 인위적으로 제조된 많은 화학물질은 자연적에서 발생하는 휴민산 발생원(humic acid precursors)과 닮았다. 따라서 화학물은 부식 과정(humifications process)동안 부식토(humus) 내로 병합(incorporate)되어 진다. 일단 이렇게 구성된 결합체는 생물체와 오염물질과의 반응을 방지하여 오염물질로 인한 생물체로의 독성을 감소시키는 역할을 하게 된다. 본 논문에서는 이러한 흙의 유기물(organic matter)와 오염물질과의 결합체에 대한 평가로서 다음의 항목에 대한 고찰이 이루어져야 함을 강조하였다. (a)결합체에서 생물체(biota)와의 반응에 의해 오염물질은 감소되는가\ulcorner (b) 모(parent) 화합물과 비교하여 복합체 생성물(complexed products)이 얼마나 덜 유독한가\ulcorner 그리고 (c)지하수 오염이 오염물질의 유동성 구속에 의해 얼마나 감소되는지\ulcorner
신생혈관형성을 억제하는 것은 최근들어 많은 고형암의 치료에 있어서 매우 유용한 접근 방법이다. 현재까지 가장 잘 알려진 접근 방법은 신생혈관형성의 핵심인자인 혈관내피세포성장인자(VEGF)를 표적으로 하는 방법이다. 다양한 화학예방 물질들을 포함하는 많은 자연의 생산물들이나 추출물들은 그들의 항신생혈관형성 성질을 통하여 악성종양의 성장을 억제하고 있다. 황백은 항종양, 항균, 항염증 및 그외 다른 생물학적 작용을 가지고 있는, 오래전부터 널리 사용되어온 한국 전통 약재이다. 우리는 종양의 성장, 침투, 전이에 있어서 매우 중요한 과정인 신생혈관형성에 미치는 황백 온수추출물의 효과를 연구하였다. 황백 온수추출물의 항신생혈관형성 효과를 확인하기 위해서 혈관 내피세포의 성장, 이동, 침투, 관형성 그리고, 자이모그램 분석을 수행하였으며, 흰쥐 대동맥 주변 미세혈관 발아실험을 진행하였다. 그 결과, 황백 온수추출물은 혈관내피세포성장인자(VEGF)에 의해 유도되는 혈관내피세포의 성장, 이동, 침투, 관형성 그리고, 대동맥의 혈관발아를 억제하는 효과를 in vitro와 ex vivo 실험을 통해서 확인하였다. 또한, 황백 추출물은 VEGF에 의해 유도되는 기질금속단백질분해효소 (MMP)-2와 -9의 활성화를 저해하였다. 본 연구 결과들은 황백 온수추출물의 신생혈관형성 억제작용이 암과 같은 혈관신생과 관련된 질병을 치료하는데 좋은 소재가 될 수 있음을 시사한다
가잠에 있어서 피해가 많은 전염성 연화병(Flacherie Virus; FV)과 농핵병 바이러스(Densonucleosis virus; DNV)의 증식에 관한 연구를 행하기 위하여 서당밀도 구배 초원심분리법에 의한 양바이러스의 정제 및 전자현미경에 의한 관찰, 바이러스 감염잠의 중장과 체액에서의 핵산과 단백질의 변동 및 감염중장 피막세포의 전자현미경에 의한 병리조직학적 관찰 등, 일연의 조사를 통하여 다음과 같은 연구결과를 얻었다. 1. 서당밀도구배에 의한 초원심분리법을 이용하여 FV 및 DNV를 분획한 결과, base line이 낮고 좌우상칭의 단일 peak를 나타내는 전형적인 바이러스 분획을 얻었으며, 또한 이들 바이러스의 negative 염색에 의한 전자현미경 관찰에서 FV는 27nm, DNV는 21nm의 균일한 구형입자임이 확인되었다. 2. 두 바이러스 감염잠의 체중은 바이러스 접종 6일 후부터, 중장중은 바이러스 접종 3일 후부터 건전잠에 비해 뚜렷한 감소를 나타냈다. 3. DNA의 양적 변화는 FV 및 DNV 감염잠에서 공히 중장에서는 전기간을 통해 건전잠에서 보다 높았고, 체액에서는 바이러스 접종 초ㆍ중기에는 큰 변화가 없고 바이러스 접종 7일 이후에는 건전잠에서 보다 훨씬 낮았다. 4. RNA의 양적 변화는 FV 및 DNV 감염잠에서 다같이 바이러스 접종 초기에 중장에서는 건전잠에 비해 높았고, 체액에서는 건전잠에 비해 매우 낮았으나, 바이러스 접종 말기에는 중장 및 체액의 경우 공히 건전잠에서 보다 현저히 낮았으며 그 정도는 DNV 감염잠에서 더 심했다. 5. FV 및 DNV 감염잠에서 중장과 체액의 단백질은 바이러스 접종 중기까지는 건전잠에 비해 큰 변화가 없었으나, 접종 말기에서는 건전잠에서 보다 월등히 낮았다. 6. 바이러스 접종 8일 후의 FV 및 DNV 감염잠 중장 RNA 전기영동상은 건전잠의 중장 RNA인 26S, 17S, 5S 및 4S의 4종 band와 동일했다. 7. FV 및 DNV 감염잠의 중장 단백질 전기영동상은 바이러스 접종 1일과 5일 후에는 건전잠의 것과 큰 차이가 없고, 접종 8일 후에는 건전잠에 존재하는 이동도가 낮은 L band가 양 바이러스 감염잠에서는 공히 소실되는 반면, 건전잠에서 볼 수 없는 이동도가 중간인 M band가 새로이 나타났으며 비교적 이동도가 높은 건전잠의 N band는 양 바이러스 감염잠에서는 2개로 분리되었다. 8. 체액단백질의 전기영동상은 FV 및 DNV감염잠 공히 건전잠의 것과 유사하나, 바이러스 접종 8일 후에는 양적인 감소를 나타내어 건전잠의 약 40%에 지나지 않았다. 9. FV 감염중장조직을 pyronin-methyl green 2종 염색을 하여 광학현미경으로 관찰한 결과, 바이러스 접종 8일 후의 중장원동세포내에서 A형 및 B형 봉입체가 형성되었음을 확인하였다. 10. FV감염 중장조직세포의 전자현미경 관찰에서는 바이러스 접종 5일 후에 배상세포의 'cytoplasmic wall'이 비대해지고 그 내부에 virus-specific vesicle이 형성되었으며, 바이러스 접종 8일 후에는 virus-specific vesicle, 바이러스 입자, linear structure, tubular structure 및 전자밀도가 높은 matrix 등의 바이러스 감염에 대한 특이적인 구조물이 배상세포의 세포질에서 관찰되었으며, microvilli내에서 바이러스 입자의 존재도 확정되었다. 특히 virus-specific vesicle 주위에서는 전자밀도가 높은 구형의 바이러스 입자 유사체가 관찰되었는데, 이것은 virus-specific vesicle 주위에서 바이러스 조립이 일어나는 것을 추정된다. 한편 원통세포 내에서 봉입체 관찰되고, 변형소구화된 배상세포가 중장강으로 탈락되는 것이 관찰되었다. 11. DNV감염 중장조직을 acridine orange 염색을 하여 형광현미경으로 관찰한 결과, DNV접종 5일 후에 본 바이러스 증식 장소인 원동세포핵의 비대가 뚜렷이 관찰되었다. 12. 전자현미경에 의해 DNV감염 중장조직세포를 관찰한 결과, 바이러스 접종 5일 후에 원동세포 핵내의 인이 소형 과립으로 붕괴되어 산재되었고, 접종 8일후에는 전자밀도가 높은 virogenic stroma가 출현하였으며, 감염 말기로 추정되는 핵내의 전자밀도가 전자보다 낮고 더욱 확대되어 핵의 대부분을 차지하는 virogenic stroma도 관찰되었다. 또한 이들 virogenic stroma내에서 바이러스 입자유사체가 관찰되는 것으로 보아 이 virogenic stroma는 바이러스 전구물질의 합성 및 바이러스 조립장소임을 시사하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.