• Title/Summary/Keyword: mobile vision system

Search Result 292, Processing Time 0.03 seconds

Single Camera Omnidirectional Stereo Imaging System (단일 카메라 전방향 스테레오 영상 시스템)

  • Yi, Soo-Yeong;Choi, Byung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.400-405
    • /
    • 2009
  • A new method for the catadioptric omnidirectional stereo vision with single camera is presented in this paper. The proposed method uses a concave lens with a convex mirror. Since the optical part of the proposed method is simple and commercially available, the resultant omnidirectional stereo system becomes versatile and cost-effective. The closed-form solution for 3D distance computation is presented based on the simple optics including the reflection and the reflection of the convex mirror and the concave lens. The compactness of the system and the simplicity of the image processing make the omnidirectional stereo system appropriate for real-time applications such as autonomous navigation of a mobile robot or the object manipulation. In order to verify the feasibility of the proposed method, an experimental prototype is implemented.

Indoor Positioning System using Incident Angle Detection of Infrared sensor (적외선 센서의 입사각을 이용한 실내 위치인식 시스템)

  • Kim, Su-Yong;Choi, Ju-Yong;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.991-996
    • /
    • 2010
  • In this paper, a new indoor positioning system based on incident angle measurement of infrared sensor has been suggested. Though there have been various researches on indoor positioning systems using vision sensor or ultrasonic sensor, they have not only advantages, but also disadvantages. In a new positioning system, there are three infrared emitters on fixed known positions. An incident angle sensor measures the angle differences between each two emitters. Mathematical problems to determine the position with angle differences and position information of emitters has been solved. Simulations and experiments have been implemented to show the performance of this new positioning system. The results of simulation were good. Since there existed problems of noise and signal conditioning, the experimented has been implemented in limited area. But the results were acceptable. This new positioning method can be applied to any indoor systems that need absolute position information.

All in focus Camera vision system for Mobile Phone based on the Micro Diffractive Fresnel lens systems (곡률 변경 소자를 이용한 All In Focus)

  • Chi, Yong-Seok;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.65-70
    • /
    • 2007
  • A method to focus the object in camera system by applying the Hill climb algorithm from optical lens moving device (VCM; Voice coil motor) is proposed. The focusing algorithm from VCM is focus on the object but in these criteria is a well-known drawback; the focus is good only at same distance objects but the focus is bad (blur image) at different distance objects because of the DOF (Depth of focus) or DOF (Depth of field) at the optical characteristic. Here, the new camera system that describes the Reflector of free curvature systems (or Diffractive Fresnel lens) and the partition of focusing window area is proposed. The method to improve the focus in all areas (different distance objects) is proposed by new optical system (discrete auto in-focus) using the Reflector of free curvature systems (or Diffractive Fresnel lens) and by applying the partition of all areas. The proposal is able to obtain good focus in all areas.

  • PDF

A Range-Based Monte Carlo Box Algorithm for Mobile Nodes Localization in WSNs

  • Li, Dan;Wen, Xianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3889-3903
    • /
    • 2017
  • Fast and accurate localization of randomly deployed nodes is required by many applications in wireless sensor networks (WSNs). However, mobile nodes localization in WSNs is more difficult than static nodes localization since the nodes mobility brings more data. In this paper, we propose a Range-based Monte Carlo Box (RMCB) algorithm, which builds upon the Monte Carlo Localization Boxed (MCB) algorithm to improve the localization accuracy. This algorithm utilizes Received Signal Strength Indication (RSSI) ranging technique to build a sample box and adds a preset error coefficient in sampling and filtering phase to increase the success rate of sampling and accuracy of valid samples. Moreover, simplified Particle Swarm Optimization (sPSO) algorithm is introduced to generate new samples and avoid constantly repeated sampling and filtering process. Simulation results denote that our proposed RMCB algorithm can reduce the location error by 24%, 14% and 14% on average compared to MCB, Range-based Monte Carlo Localization (RMCL) and RSSI Motion Prediction MCB (RMMCB) algorithm respectively and are suitable for high precision required positioning scenes.

Collision Avoidance Sensor System for Mobile Crane (전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발)

  • Kim, Ji-Chul;Kim, Young Jea;Kim, Mingeuk;Lee, Hanmin
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

A study on stand-alone autonomous mobile robot using mono camera (단일 카메라를 사용한 독립형 자율이동로봇 개발)

  • 정성보;이경복;장동식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • This paper introduces a vision based autonomous mini mobile robot that is an approach to produce real autonomous vehicle. Previous autonomous vehicles are dependent on PC, because of complexity of designing hardware, difficulty of installation and abundant calculations. In this paper, we present an autonomous motile robot system that has abilities of accurate steering, quick movement in high speed and intelligent recognition as a stand-alone system using a mono camera. The proposed system has been implemented on mini track of which width is 25~30cm, and length is about 200cm. Test robot can run at average 32.9km/h speed on straight lane and average 22.3km/h speed on curved lane with 30~40m radius. This system provides a model of autonomous mobile robot adapted a lane recognition algorithm in odor to make real autonomous vehicle easily.

  • PDF

Manipulator with Camera for Mobile Robots (모바일 로봇을 위한 카메라 탑재 매니퓰레이터)

  • Lee Jun-Woo;Choe, Kyoung-Geun;Cho, Hun-Hee;Jeong, Seong-Kyun;Bong, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.507-514
    • /
    • 2022
  • Mobile manipulators are getting lime light in the field of home automation due to their mobility and manipulation capabilities. In this paper, we developed a small size manipulator system that can be mounted on a mobile robot as a preliminary study to develop a mobile manipulator. The developed manipulator has four degree-of-freedom. At the end-effector of manipulator, there are a camera and a gripper to recognize and manipulate the object. One of four degree-of-freedom is linear motion in vertical direction for better interaction with human hands which are located higher than the mobile manipulator. The developed manipulator was designed to dispose the four actuators close to the base of the manipulator to reduce rotational inertia of the manipulator, which improves stability of manipulation and reduces the risk of rollover. The developed manipulator repeatedly performed a pick and place task and successfully manipulate the object within the workspace of manipulator.

The GEO-Localization of a Mobile Mapping System (모바일 매핑 시스템의 GEO 로컬라이제이션)

  • Chon, Jae-Choon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.555-563
    • /
    • 2009
  • When a mobile mapping system or a robot is equipped with only a GPS (Global Positioning System) and multiple stereo camera system, a transformation from a local camera coordinate system to GPS coordinate system is required to link camera poses and 3D data by V-SLAM (Vision based Simultaneous Localization And Mapping) to GIS data or remove the accumulation error of those camera poses. In order to satisfy the requirements, this paper proposed a novel method that calculates a camera rotation in the GPS coordinate system using the three pairs of camera positions by GPS and V-SLAM, respectively. The propose method is composed of four simple steps; 1) calculate a quaternion for two plane's normal vectors based on each three camera positions to be parallel, 2) transfer the three camera positions by V-SLAM with the calculated quaternion 3) calculate an additional quaternion for mapping the second or third point among the transferred positions to a camera position by GPS, and 4) determine a final quaternion by multiplying the two quaternions. The final quaternion can directly transfer from a local camera coordinate system to the GPS coordinate system. Additionally, an update of the 3D data of captured objects based on view angles from the object to cameras is proposed. This paper demonstrated the proposed method through a simulation and an experiment.

A Convergency Study on the QR Code Perception Indoor-mobile Robot Control - Focused on Wireless System Configuration (QR 코드 인식 실내이동 로봇제어 융합연구 - 무선시스템 구성을 중심으로)

  • Lee, Jeongl-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.251-255
    • /
    • 2019
  • The QR codes are printed in sticker form and have many advantages in terms of location recognition accuracy or installation cost compared to the location recognition method, which attaches artificial indicators to ceilings or walls for low-cost location recognition, and the way in which the location is recognized by vision, to create robots that are generally applicable to all industries. In this study, it is shown that the two-dimensional square bar code applied to the robot within 3 mm of error allows the robot to be made with high accuracy and accurate location control. In particular, the fusion research, combined with various engineering technologies, describes QR code-aware indoor mobile robot control research centered on the construction of the system.

Error Correction Scheme in Location-based AR System Using Smartphone (스마트폰을 이용한 위치정보기반 AR 시스템에서의 부정합 현상 최소화를 위한 기법)

  • Lee, Ju-Yong;Kwon, Jun-Sik
    • Journal of Digital Contents Society
    • /
    • v.16 no.2
    • /
    • pp.179-187
    • /
    • 2015
  • Spread of smartphone creates various contents. Among many contents, AR application using Location Based Service(LBS) is needed widely. In this paper, we propose error correction algorithm for location-based Augmented Reality(AR) system using computer vision technology in android environment. This method that detects the early features with SURF(Speeded Up Robust Features) algorithm to minimize the mismatch and to reduce the operations, and tracks the detected, and applies it in mobile environment. We use the GPS data to retrieve the location information, and use the gyro sensor and G-sensor to get the pose estimation and direction information. However, the cumulative errors of location information cause the mismatch that and an object is not fixed, and we can not accept it the complete AR technology. Because AR needs many operations, implementation in mobile environment has many difficulties. The proposed approach minimizes the performance degradation in mobile environments, and are relatively simple to implement, and a variety of existing systems can be useful in a mobile environment.