• Title/Summary/Keyword: mobile sensor node

Search Result 242, Processing Time 0.026 seconds

A Data Gathering Scheme using Dynamic Branch of Mobile Sink in Wireless Sensor Networks (무선 센서망에서 이동 싱크의 동적 브랜치를 통한 데이터 수집 방안)

  • Lee, Kil-Hung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2012
  • This paper suggests a data gathering scheme using dynamic branch tree in wireless sensor networks. A mobile sink gathers data from each sensor node using a dynamic data gathering tree rooted at the mobile sink node. As the sink moves, a tree that has multiple branch is formed and changed dynamically as with the position of the sink node. A hop-based scope filter and a restricted flooding scheme of the tree are also suggested. Simulation results show that the proposed data gathering scheme has better results in data arrival rate, the end-to-end delay and energy saving characteristics compared with the previous scheme.

An Energy-Efficient Mobility-Supporting MAC Protocol in Wireless Sensor Networks

  • Peng, Fei;Cui, Meng
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • Although mobile applications are an essential characteristic of wireless sensor networks, most existing media access control (MAC) protocols focus primarily on static networks. In these protocols, fixed periodic neighbor discovery and schedule updating are used to connect and synchronize neighbors to provide successful data transmission; however, they cannot adapt to mobile speed variation and degrade the network performance dramatically. In this paper, we propose a mobile-supporting mechanism for MAC protocols, in which the decision to update the neighbors of a mobile node is made adaptively according to the mobile speed. Analysis and simulation results demonstrate that the mechanism efficiently avoids the disconnection of amobile node from its neighbors and achieves a better performance as compared with fixed periodic neighbor discovery.

Analyses of a Signal Traffic for Authentication in Mobile Sensor Network (이동 센서 네트워크망에서의 인증 메카니즘 신호의 트래픽 분석)

  • Kim Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1524-1528
    • /
    • 2005
  • In this paper, we analyses of a traffic for authentication signaling in third generation mobile sensor network. In universal mobile telecommunication system, authentication functions are utilized to identify and authentication a mobile station and validate the service request network services. The authenticating parties are the authentication the serving general packet radio service support node access the authentication center to obtain the authentication with the mobile station. In this paper, we propose that the automatic cost-effective solution size of the authentication vector array.

The Underwater UUV Docking with 3D RF Signal Attenuation based Localization (UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

Active Rule Manager for the Mobile Agent Middleware System

  • Lee, Yon-Sik;Cheon, Eun-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.99-105
    • /
    • 2016
  • The active rule system is a key element of the rule-based mobile agent middleware system for activeness and autonomy of the sensor network. The rule manager, which is the main components of active rule based mobile agent framework and active rule system, performs the control and management of the rule-related processes. In this paper, we design and implement the roles and functions of the rule manager in detail. The proposed rule manager plays an important role in the sensor network environment. The sensor data server loads the active rule on the mobile agent by the rule manager according to the situations, and the mobile agent migrates to the destination node and performs the designated action. This active rule-based mobile agent middleware system presents the usefulness for the various sensor network applications. Through the rule execution experiment using the rule-based mobile agent, we show the adaptability and applicability of rule-based mobile agent middleware system to the dynamic environmental changes in sensor networks.

A Genetic-Algorithm-Based Optimized Clustering for Energy-Efficient Routing in MWSN

  • Sara, Getsy S.;Devi, S. Prasanna;Sridharan, D.
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.922-931
    • /
    • 2012
  • With the increasing demands for mobile wireless sensor networks in recent years, designing an energy-efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near-optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near-optimal energy-efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy-efficient routing technique produces a longer network lifetime and achieves better energy efficiency.

Design and Implementation of a Mobile Ubiquitous Healthcare System (모바일 유비쿼터스 헬스케어시스템 설계 및 구현)

  • Lee, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.781-793
    • /
    • 2010
  • Recently, owing to the development of ubiquitous sensor network and mobile communication technologies, many studies on healthcare system are being carried out. In this paper, we have designed and implemented a mobile u-Healthcare system based on sensor network. The u-Healthcare system is composed of three components: wireless sensor network at home, healthcare center located at remote site, and gateway which relays sensing physiological signals to healthcare center. In order to measure patient's physiological signal three sensors are used: three channel ECG sensor, pulse oximeter, and blood pressure sensor. Each sensor is mounted on a mote which can send gathered signal to the base node using Zigbee communication protocol. Once the base node receives physiological signal from each sensor, the client in the base node transfers the signal to the healthcare center. The received physiological signal at the healthcare center is analyzed and processed using various algorithms. The processed results are compared to the standard healthcare database and appropriate treatment including dietetics and exercise cure would be sent to the patient as feedback using SMS message or healthcare center web site. Each patient can check and manage one's health state every day using the healthcare system and gain a recovery under the treatments from minor health problems.

Energy Efficient Clustering Scheme for Mobile Wireless Sensor Network (이동 무선 센서 네트워크에서의 에너지 효율적인 클러스터링 기법)

  • Lee, Eun-Hee;Kim, Hyun-Duk;Choi, Won-Ik;Chae, Jin-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.388-398
    • /
    • 2011
  • In this paper, we introduce an EMSP(Efficient Mobility Support Protocol) for mobile sensor network with mobility-aware. We propose virtual cluster and node split scheme considering movements of mobile nodes. The existing M-LEACH protocol suffers from communication cost spent on JOIN request information during invitation phase. To address this issue, the large boundary of the cluster in LUR-tree can reduce superfluous update cost. In addition to the expansion of the cluster, the proposed approach exploits node split algorithms used in R-tree in order to uniformly form a cluster. The simulated results show that energy-consumption has less up to about 40% than LEACH-C and 8% than M-LEACH protocol. Finally, we show that the proposed scheme outperforms those of other in terms of lifetime of sensor fields and scalability in wireless sensor network.

A Collaborative and Predictive Localization Algorithm for Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3480-3500
    • /
    • 2017
  • Accurate locating for the mobile target remains a challenge in various applications of wireless sensor networks (WSNs). Unfortunately, most of the typical localization algorithms perform well only in the WSN with densely distributed sensor nodes. The non-localizable problem is prone to happening when a target moves into the WSN with sparsely distributed sensor nodes. To solve this problem, we propose a collaborative and predictive localization algorithm (CPLA). The Gaussian mixture model (GMM) is introduced to predict the posterior trajectory for a mobile target by training its prior trajectory. In addition, the collaborative and predictive schemes are designed to solve the non-localizable problems in the two-anchor nodes locating, one-anchor node locating and non-anchor node locating situations. Simulation results prove that the CPLA exhibits higher localization accuracy than other tested predictive localization algorithms either in the WSN with sparsely distributed sensor nodes or in the WSN with densely distributed sensor nodes.

Cluster-Based Mobile Sink Location Management Scheme for Solar-Powered Wireless Sensor Networks

  • Oh, Eomji;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a sink-location management and data-routing scheme to effectively support the mobile sink in solar-powered WSN. Battery-based wireless sensor networks (WSNs) have a limited lifetime due to their limited energy, but solar energy-based WSNs can be supplied with energy periodically and can operate forever. On the other hand, introduction of mobile sink in WSNs can solve some energy unbalance problem between sink-neighboring nodes and outer nodes which is one of the major challenges in WSNs. However, there is a problem that additional energy should be consumed to notify each sensor node of the location of the randomly moving mobile sink. In the proposed scheme, one of the nodes that harvests enough energy in each cluster are selected as the cluster head, and the location information of the mobile sink is shared only among the cluster heads, thereby reducing the location management overhead. In addition, the overhead for setting the routing path can be removed by transferring data in the opposite direction to the path where the sink-position information is transferred among the heads. Lastly, the access node is introduced to transmit data to the sink more reliably when the sink moves frequently.