• Title/Summary/Keyword: mobile nodes

Search Result 1,161, Processing Time 0.022 seconds

Dynamic Local Update-based Routing Protocol(D-LURP) in Wireless Sensor Network with Mobile Sink (모바일 싱크노드를 갖는 무선 센서 네트워크에서 동적 지역 업데이트 기반의 라우팅 프로토콜(D-LURP))

  • Chung, Jae-Hoon;Park, Sung-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.116-122
    • /
    • 2009
  • Mobile Wireless Sensor Network is an organized collection of sensor nodes and mobile sink nodes, in which the sensor node transmits the signal to the sink node. In real environment, there are many cases in which sinks have mobility caused by the people, the vehicle and etc. Since all nodes in the sensor networks have limited energy, many researches have been done in order to prolong the lifetime of the entire network. In this paper we propose Dynamic Local Update-based Routing Protocol(D-LURP) that prolong the lifetime of the entire network to efficiently maintain frequent location update of mobile sink static sensor nodes in Mobile WSNs. When the sink node moves out of the local broadcasting area the proposed D-LURP configures dynamically the local update area consisted of the new local broadcasting area and the previous dissemination node(DN) and find the path between the DN and the sink node, instead of processing a new discovering path like LURP. In this way the processing of broadcasting sink node's location information in the entire network will be omitted. and thus less energy will be consumpted. We compare the performances of the proposed scheme and existing Protocols.

A Leader Election Algorithm and Performance Evaluation for Mobile Ad hoc Networks (이동 에드 혹 네트워크를 위한 제어노드 선택 알로리즘 및 성능 평가)

  • Parvathipuram Pradeep;Yang Gi-Chul;Oh Sooyul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.829-834
    • /
    • 2004
  • Nodes communicate through wireless channels under peer-to-peer level in ad-hoc mobile networks. The nodes are free to move around in a geographical area and are loose]y bounded by the transmission range of the wireless channels. Also, a node is completely free to move around, there is no fixed final topology. Hence, to manage the inter-node communication and data exchange among them a leader node is required. In this paper we introduce an efficient leader election algorithm for mobile ad hoc networks where inter-node communication is allowed only among the neighboring nodes. Furthermore we present the result of performance evaluation through simulation. The algorithm is efficient and practical since it uses least amount of wireless resources and does not affect the movement of the nodes.

An Energy-aware Dynamic Source Routing Algorithm for Mobile Ad-hoc Networks (이동 애드혹 네트워크에서 에너지를 고려한 동적 소스 라우팅 알고리즘)

  • Lee, Cheong-Yeop;Shin, Yong-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.165-173
    • /
    • 2011
  • In Mobile Ad-hoc Network(MANET), mobile nodes are operated by limited batteries. Therefore, it is very important to consume the battery power efficiently to prevent termination of the network. In this paper, we propose Energy-aware Dynamic Source Routing(EDSR) which is based on the Dynamic Source Routing(DSR) to increase the packet transmission and lifetime of the network. If the battery power of a node reaches threshold level, then the node gives up the function of relaying to save battery power except as a source and a destination node. While the conventional DSR doesn't consider the battery consumptions of the nodes, EDSR blocks the nodes from relaying whose battery powers are below the threshold level. Simulation results show the proposed EDSR is more efficient in packet transmission and network lifetime through the balanced battery consumption of the mobile nodes.

An Entropy-Based Routing Protocol for Supporting Stable Route Life-Time in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 안정된 경로의 Life-Time을 지원하기 위한 엔트로피 기반의 라우팅 프로토콜)

  • An, Beong Ku;Lee, Joo Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, we propose an entropy-based routing protocol to effectively support both stable route construction and route lifetime in Mobile Ad-hoc Wireless Sensor Networks (MAWSN). The basic idea and feature of the proposed routing protocol are as follows. First, we construct the stable routing routes based on entropy concept using mobility of mobile nodes. Second, we consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed routing protocol is performed via simulation using OPNET(Optimized Network Engineering Tool) and analysis. The results of the performance evaluation show that the proposed routing protocol can efficiently support both the construction of stable route and route lifetime in mobile ad-hoc wireless networks.

  • PDF

Design and Evaluation of ARDG Scheme for Mobility Management in Ad Hoc Networks (에드 혹 네트워크에서 이동성 관리를 위한 적응적 랜덤 데이터베이스 그룹 방안의 설계 및 평가)

  • Bae Ihn-Han;Ha Sook-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.917-922
    • /
    • 2004
  • Mobile ad hoc networks (MANETs) are networks of mobile nodes that have no fixed network infrastructure. Since the mobile node's location changes frequently, it is an attractive area to maintain the node's location efficiently. In this paper, we present an adaptive randomized database group (ARDG) scheme to manage the mobile nodes mobility in MHANETs. The proposed scheme stores the network nodes' location in location databases to manage the nodes' mobility. When a mobile node changes its location or needs a node's location, the node randomly select some databases to update or que교 the location information. The number of the selected databases is fixed in the case of querying while the number of the databases is determined according to the node's popularity in the case of updating. We evaluated the performance of the proposed scheme using an analytical model, and compared the performance with that of the conventional randomized database group (RDG) scheme.

Enhancement of Return Routability Mechanism for Optimized-NEMO Using Correspondent Firewall

  • Hasan, Samer Sami;Hassan, Rosilah
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2013
  • Network Mobility (NEMO) handles mobility of multiple nodes in an aggregate manner as a mobile network. The standard NEMO suffers from a number of limitations, such as inefficient routing and increased handoff latency. Most previous studies attempting to solve such problems have imposed an extra signaling load and/or modified the functionalities of the main entities. In this paper, we propose a more secure and lightweight route optimization (RO) mechanism based on exploiting the firewall in performing the RO services on behalf of the correspondent nodes (CNs). The proposed mechanism provides secure communications by making an authorized decision about the mobile router (MR) home of address, MR care of address, and the complete mobile network prefixes underneath the MR. In addition, it reduces the total signaling required for NEMO handoffs, especially when the number of mobile network nodes and/or CNs is increased. Moreover, our proposed mechanism can be easily deployed without modifying the mobility protocol stack of CNs. A thorough analytical model and network simulator (Ns-2) are used for evaluating the performance of the proposed mechanism compared with NEMO basic support protocol and state-of-the-art RO schemes. Numerical and simulation results demonstrate that our proposed mechanism outperforms other RO schemes in terms of handoff latency and total signaling load on wired and wireless links.

A Secure Intrusion Detection System for Mobile Ad Hoc Network (모바일 Ad Hoc 네트워크를 위한 안전한 침입 탐지 시스템)

  • Shrestha, Rakesh;Lee, Sang-Duk;Choi, Dong-You;Han, Seung-Jo;Lee, Seong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.87-94
    • /
    • 2009
  • The intrusion detection system is one of the active fields of research in wireless networks. Intrusion detection in wireless mobile Ad hoc network is challenging because the network topologies are dynamic, lack centralization and are vulnerable to attacks. Detection of malicious nodes in an open ad-hoc network in which participating nodes do not have previous security association has to face number of challenges which is described in this paper. This paper is about determining the malicious nodes under critical conditions in the mobile ad-hoc network and deals with security and vulnerabilities issues which results in the better performance and detection of the intrusion.

Performance of Mobility Models for Routing Protocol in Wireless Ad-hoc Networks

  • Singh, Madhusudan;Lee, Sang-Gon;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.610-614
    • /
    • 2011
  • Nowadays Mobile Ad Hoc Networks (MANETs) are a very popular and emerging technology in the world. MANETs helps mobile nodes to communicate with each other anywhere without using infrastructure. For this purpose we need good routing protocols to establish the network between nodes because mobile nodes can change their topology very fast. Mobile node movements are very important features of the routing protocol. They can have a direct effect on the network performance. In this paper, we are going to discuss random walk and random waypoint mobility models and their effects on routing parameters. Previously, mobility models were used to evaluate network performance under the different routing protocols. Therefore, the network performance will be strongly modeled by the nature of the mobility pattern. The routing protocols must rearrange the changes of accurate routes within the order. Thus, the overheads of traffic routing updates are significantly high. For specific network protocols or applications, these mobility patterns have different impacts.

Strong Connection Clustering Scheme for Shortest Distance Multi-hop Transmission in Mobile Sensor Networks (모바일 센서 네트워크에서 최단거리 멀티홉 전송을 위한 강한연결 클러스터 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.667-677
    • /
    • 2018
  • Since sensor networks consist of sensor nodes with limited energy resources, so efficient energy use of sensor nodes is very important in the design of sensor networks. Sensor nodes consume a lot of energy for data transmission. Clustering technique is used to efficiently use energy in data transmission. Recently, mobile sink techniques have been proposed to reduce the energy load concentrated on the cluster header near a sink node. The CMS(Cluster-based Mobile sink) technique minimizes the generation of control messages by creating a data transmission path while creating clusters, and supports the inter-cluster one-hop transmission. But, there is a case where there is no connectivity between neighbor clusters, it causes a problem of having a long hop data transmission path regardless of local distance. In this paper, we propose a SCBC(Strong connection balancing cluster) to support the path of the minimum number of hops. The proposed scheme minimizes the number of hops in the data transmission path and supports efficient use of energy in the cluster header. This also minimizes a number of hops in data transmission paths even when the sink moves and establishes a new path, and it supports the effect of extending the life cycle of the entire sensor network.

Load Balancing and Mobility Management in Multi-homed Wireless Mesh Networks

  • Tran, Minh Tri;Kim, Young-Han;Lee, Jae-Hwoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.959-975
    • /
    • 2011
  • Wireless mesh networks enlarge the wireless coverage area by interconnecting relatively stationary wireless routers (mesh routers). As wireless mesh networks are envisioned to provide high-bandwidth broadband Internet service to a large community of users, the Internet gateway, which acts as a central point of Internet attachment for the mesh networks, is likely to suffer heavily from the scramble for shared wireless resources because of aggregated traffic toward the Internet. It causes performance decrement on end-to-end transmissions. We propose a scheme to balance the load in a mesh network based on link quality variation to different Internet gateways. Moreover, under the mesh coverage, mobile nodes can move around and connect to nearby mesh routers while still keeping the connections to the Internet through the best gateway in terms of link quality. In this structure, gateways perform the balancing procedure through wired links. Information about gateways and mobile node's location is distributed appropriately so that every mesh router can quickly recognize the best gateway as well as the positions of mobile nodes. This distributed information assists mobile nodes to perform fast handoff. Significant benefits are shown by the performance analysis.