• 제목/요약/키워드: mobile image retrieval

검색결과 41건 처리시간 0.022초

Metadata Processing Technique for Similar Image Search of Mobile Platform

  • Seo, Jung-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제19권1호
    • /
    • pp.36-41
    • /
    • 2021
  • Text-based image retrieval is not only cumbersome as it requires the manual input of keywords by the user, but is also limited in the semantic approach of keywords. However, content-based image retrieval enables visual processing by a computer to solve the problems of text retrieval more fundamentally. Vision applications such as extraction and mapping of image characteristics, require the processing of a large amount of data in a mobile environment, rendering efficient power consumption difficult. Hence, an effective image retrieval method on mobile platforms is proposed herein. To provide the visual meaning of keywords to be inserted into images, the efficiency of image retrieval is improved by extracting keywords of exchangeable image file format metadata from images retrieved through a content-based similar image retrieval method and then adding automatic keywords to images captured on mobile devices. Additionally, users can manually add or modify keywords to the image metadata.

모바일 환경에서 의미 기반 이미지 어노테이션 및 검색 (Semantic Image Annotation and Retrieval in Mobile Environments)

  • 노현덕;서광원;임동혁
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1498-1504
    • /
    • 2016
  • The progress of mobile computing technology is bringing a large amount of multimedia contents such as image. Thus, we need an image retrieval system which searches semantically relevant image. In this paper, we propose a semantic image annotation and retrieval in mobile environments. Previous mobile-based annotation approaches cannot fully express the semantics of image due to the limitation of current form (i.e., keyword tagging). Our approach allows mobile devices to annotate the image automatically using the context-aware information such as temporal and spatial data. In addition, since we annotate the image using RDF(Resource Description Framework) model, we are able to query SPARQL for semantic image retrieval. Our system implemented in android environment shows that it can more fully represent the semantics of image and retrieve the images semantically comparing with other image annotation systems.

모바일 디바이스상에서 공간-칼라와 가버 질감을 이용한 내용-기반 영상 검색 (Content-based Image Retrieval using Spatial-Color and Gabor Texture on A Mobile Device)

  • 이용환;이준환;조한진;권오진;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.91-96
    • /
    • 2014
  • Mobile image retrieval is one of the most exciting and fastest growing research fields in the area of multimedia technology. As the amount of digital contents continues to grow users are experiencing increasing difficulty in finding specific images in their image libraries. This paper proposes a new efficient and effective mobile image retrieval method that applies a weighted combination of color and texture utilizing spatial-color and second order statistics. The system for mobile image searches runs in real-time on an iPhone and can easily be used to find a specific image. To evaluate the performance of the new method, we assessed the iPhone simulations performance in terms of average precision and recall using several image databases and compare the results with those obtained using existing methods. Experimental trials revealed that the proposed descriptor exhibited a significant improvement of over 13% in retrieval effectiveness, compared to the best of the other descriptors.

A Privacy-preserving Image Retrieval Scheme in Edge Computing Environment

  • Yiran, Zhang;Huizheng, Geng;Yanyan, Xu;Li, Su;Fei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.450-470
    • /
    • 2023
  • Traditional cloud computing faces some challenges such as huge energy consumption, network delay and single point of failure. Edge computing is a typical distributed processing platform which includes multiple edge servers closer to the users, thus is more robust and can provide real-time computing services. Although outsourcing data to edge servers can bring great convenience, it also brings serious security threats. In order to provide image retrieval while ensuring users' data privacy, a privacy preserving image retrieval scheme in edge environment is proposed. Considering the distributed characteristics of edge computing environment and the requirement for lightweight computing, we present a privacy-preserving image retrieval scheme in edge computing environment, which two or more "honest but curious" servers retrieve the image quickly and accurately without divulging the image content. Compared with other traditional schemes, the scheme consumes less computing resources and has higher computing efficiency, which is more suitable for resource-constrained edge computing environment. Experimental results show the algorithm has high security, retrieval accuracy and efficiency.

Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images

  • Jung-Hee, Seo
    • Journal of information and communication convergence engineering
    • /
    • 제22권1호
    • /
    • pp.56-63
    • /
    • 2024
  • Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-based image retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device.

PPD: A Robust Low-computation Local Descriptor for Mobile Image Retrieval

  • Liu, Congxin;Yang, Jie;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.305-323
    • /
    • 2010
  • This paper proposes an efficient and yet powerful local descriptor called phase-space partition based descriptor (PPD). This descriptor is designed for the mobile image matching and retrieval. PPD, which is inspired from SIFT, also encodes the salient aspects of the image gradient in the neighborhood around an interest point. However, without employing SIFT's smoothed gradient orientation histogram, we apply the region based gradient statistics in phase space to the construction of a feature representation, which allows to reduce much computation requirements. The feature matching experiments demonstrate that PPD achieves favorable performance close to that of SIFT and faster building and matching. We also present results showing that the use of PPD descriptors in a mobile image retrieval application results in a comparable performance to SIFT.

모바일 플랫폼에서 개선된 SURF와 DCD를 이용한 효율적인 영상 검색 (Efficient Image Search using Advanced SURF and DCD on Mobile Platform)

  • 이용환
    • 반도체디스플레이기술학회지
    • /
    • 제14권2호
    • /
    • pp.53-59
    • /
    • 2015
  • Since the amount of digital image continues to grow in usage, users feel increased difficulty in finding specific images from the image collection. This paper proposes a novel image searching scheme that extracts the image feature using combination of Advanced SURF (Speed-Up Robust Feature) and DCD (Dominant Color Descriptor). The key point of this research is to provide a new feature extraction algorithm to improve the existing SURF method with removal of unnecessary feature in image retrieval, which can be adaptable to mobile system and efficiently run on the mobile environments. To evaluate the proposed scheme, we assessed the performance of simulation in term of average precision and F-score on two databases, commonly used in the field of image retrieval. The experimental results revealed that the proposed algorithm exhibited a significant improvement of over 14.4% in retrieval effectiveness, compared to OpenSURF. The main contribution of this paper is that the proposed approach achieves high accuracy and stability by using ASURF and DCD in searching for natural image on mobile platform.

모바일 플랫폼에서 다중 특징 기반의 이미지 검색 (Image Retrieval using Multiple Features on Mobile Platform)

  • 이용환;조한진;이준환
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.237-243
    • /
    • 2014
  • 본 논문에서는 다양한 검색 환경과 모바일 디바이스의 센서 정보를 활용한 모바일 이미지 검색 방법을 제안하고 안드로이드 플랫폼에서 구동하는 검색 시스템을 구현하였다. 설계 개발 시스템은 JPEG 이미지를 대상으로 산업계 표준 메타데이터인 EXIF 속성과 시각적 특징을 결합한 새로운 검색 기술자이며, 검색을 위한 특징 추출 및 유사도 평가 알고리즘을 모바일 환경에 최적화한 이미지 검색 모듈이다. 실험을 통해, 대용량 이미지 데이터셋을 대상으로 안드로이드 폰에서 효율적인 이미지 검색을 수행하였음을 보였다.

A Rotation Invariant Image Retrieval with Local Features

  • You, Hee-Jun;Shin, Dae-Kyu;Kim, Dong-Hoon;Kim, Hyun-Sool;Park, Sang-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.332-338
    • /
    • 2003
  • Content-based image retrieval is the research of images from database, that are visually similar to given image examples. Gabor functions and Gabor filters are regarded as excellent methods for feature extraction and texture segmentation. However, they have a disadvantage not to perform well in case of a rotated image because of its direction-oriented filter. This paper proposes a method of extracting local texture features from blocks with central interest points detected in an image and a rotation invariant Gabor wavelet filter. We also propose a method of comparing pattern histograms of features classified by VQ (Vector Quantization) among images.

지역 색차 기반의 히스토그램 정교화에 의한 영상 검색 (Image Retrieval Using Histogram Refinement Based on Local Color Difference)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제18권12호
    • /
    • pp.1453-1461
    • /
    • 2015
  • Since digital images and videos are rapidly increasing in the internet with the spread of mobile computers and smartphones, research on image retrieval has gained tremendous momentum. Color, shape, and texture are major features used in image retrieval. Especially, color information has been widely used in image retrieval, because it is robust in translation, rotation, and a small change of camera view. This paper proposes a new method for histogram refinement based on local color difference. Firstly, the proposed method converts a RGB color image into a HSV color image. Secondly, it reduces the size of color space from 2563 to 32. It classifies pixels in the 32-color image into three groups according to the color difference between a central pixel and its neighbors in a 3x3 local region. Finally, it makes a color difference vector(CDV) representing three refined color histograms, then image retrieval is performed by the CDV matching. The experimental results using public image database show that the proposed method has higher retrieval accuracy than other conventional ones. They also show that the proposed method can be effectively applied to search low resolution images such as thumbnail images.