• Title/Summary/Keyword: mobile harbor ship

Search Result 18, Processing Time 0.025 seconds

Experimental Results of Ship-to-Ship Stabilized Mooring System for Mobile Harbor

  • Jeong, Tae-Gweon;Lee, Yun-Sok;Chen, Chao;Kim, Se-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.219-220
    • /
    • 2010
  • A new concept of ocean transport system, called mobile harbor, was introduced as a feasibility study in Korea in 2009. Target of the mobile harbor is a smart distance transport of containers with or without cargo handling cranes. Although the mobile harbor project has a lot of topics to deal with, this paper is to focus on only ship-to-ship stabilized mooring, which plays a key role in cargo handling. The ship-to-ship stabilized mooring system was developed and installed on beard a barge of LOA 32m and breadth 12m. The dockside tests as sea test were carried out so as to ascertain ascertained whether the systems can work well to control the barge's motion. The results of dockside test showed that the heave motion of the barge's motion can be reduced by more than 45%.

  • PDF

Experimental Results of Ship-to-ship Stabilized Mooring System for Mobile Harbor

  • Jeong, Tae-Gweon;Lee, Yun-Sok;Chen, Chao;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.281-286
    • /
    • 2010
  • A new concept of ocean transport system, called mobile harbor, was introduced as a feasibility study in Korea in 2009. Target of the mobile harbor is a short distance transport of containers with or without cargo handling cranes. Although the mobile harbor project has a lot of topics to deal with, this paper is to focus on only ship-to-ship stabilized mooring, which plays a key role in cargo handling. The ship-to-ship stabilized mooring system was developed and installed on board a barge of LOA 32m and breadth 12m. The dockside tests as sea test were carried out so as to ascertain whether the systems can work well to control the barge’s motion. The results of dockside test showed that the heave motion of the barge's motion can be reduced by more than 45%.

Axiomatic design study for automatic ship-to-ship mooring system for container operations in open sea

  • Kim, Yong Yook;Choi, Kook-Jin;Chung, Hyun;Lee, Phill-Seung
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • To provide more rational design solutions at conceptual design level, axiomatic design method has been applied to solve critical part of a new engineering problem called Mobile Harbor. In the implementation, the Mobile Harbor, a functional harbor system that consists of a vessel with container crane approaches to a container ship anchored in the open sea and establishes a secure mooring between the two vessels to carry out loading and unloading of containers. For this moving harbor system to be able to operate successfully, a reliable and safe strategy to moor and maintain constant distance between the two vessels in winds and waves is required. The design process of automatic ship-to-ship mooring system to satisfy the requirements of establishing and maintaining secure mooring has been managed using axiomatic design principles. Properly defining and disseminating Functional Requirements, clarifying interface requirements between its subsystems, and identifying potential conflict, i.e. functional coupling, at the earliest stage of design as much as possible are all part of what need to be managed in a system design project. In this paper, we discuss the automatic docking system design project under the umbrella of KAIST mobile harbor project to illustrate how the Axiomatic Design process can facilitate design projects for a large and complex engineering system. The solidified design is presented as a result.

Mobile harbor: structural dynamic response of RORI crane to wave-induced rolling excitation

  • Cho, Jin-Rae;Han, Ki-Chul;Hwang, Soon-Wook;Cho, Choon-Soo;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.679-690
    • /
    • 2012
  • A new concept sea-floating port called mobile harbor has been introduced, in order to resolve the limitation of current above-ground port facilities against the continuous growth of worldwide marine transportation. One of important subjects in the design of a mobile harbor is to secure the dynamic stability against wave-induced excitation, because a relatively large-scale heavy crane system installed at the top of mobile harbor should load/unload containers at sea under the sea state up to level 3. In this context, this paper addresses a two-step sequential analytical-numerical method for analyzing the structural dynamic response of the mobile harbor crane system to the wave-induced rolling excitation. The rigid ship motion of mobile harbor by wave is analytically solved, and the flexible dynamic response of the crane system by the rigid ship motion is analyzed by the finite element method. The hydrodynamic effect between sea water and mobile harbor is reflected by means of the added moment of inertia.

Motion Response and Mooring Analysis of Mobile Harbors Moored in Side-by-side (병렬 계류된 모바일하버의 운동응답 및 계류 해석)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.53-60
    • /
    • 2009
  • Recently, since there are several problems in space, the infra-structure and the facilities in the contiguity of the existing harbors due to the trend of enlarging the container capacity of the large container vessel, a special floating platform named as the Mobile Harbor has been proposed conceptually as an effective solution of those problems. Two kinds of hull shapes, a conventional mono-hull type and a catamaran type, are proposed as midway feeders to transfer containers to the harbor on land from a large container ship on near shore. In this study, the motion response and mooring analysis are carried out for comparing the global performance of two types of Mobile Harbor. Robot arm mooring facility specially is devised and newly tried to use for the safe fixation of a large container ship and the Mobile Harbor on near shore. It would be expected for this comparison study to give a guideline to design the efficient hull form for a midway loader.

Hydrodynamic interactions and coupled dynamics between a container ship and multiple mobile harbors

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.217-228
    • /
    • 2012
  • As the size of container ships continues to increase, not many existing harbors can host the super-container ship due to its increased draft and the corresponding dredging requires huge budget. In addition, the minimization of waiting and loading/offloading time is the most important factor in harbor competitiveness. In this regard, mobile-harbor concept has been developed in Korea to achieve much improved harbor capacity and efficiency. In developing the concept, one of the most important elements is the operability of crane between two or more floating bodies in side-by-side arrangement. The container ship is to be stationed through a hawser connection to an outside-harbor fixed-pile station with the depth allowing its large draft. The mobile harbors with smart cranes are berthed to the sides of its hull for loading/offloading containers and transportation. For successful operation, the relative motions between the two or more floating bodies with hawser/fender connections have to be within allowable range. Therefore, the reliable prediction of the relative motions of the multiple floating bodies with realistic mooring system is essential to find the best hull particulars, hawser/mooring/fender arrangement, and crane/docking-station design. Time-domain multi-hull-mooring coupled dynamic analysis program is used to assess the hydrodynamic interactions among the multiple floating bodies and the global performance of the system. Both collinear and non-collinear wind-wave-current environments are applied to the system. It is found that the non-collinear case can equally be functional in dynamics view compared to the collinear case but undesirable phenomena associated with vessel responses and hawser tensions can also happen at certain conditions, so more care needs to be taken.

The Conceptual Design of Semi-submersible Type Mobile Harbor Using Axiomatic Design Principles (공리설계를 이용한 반잠수식 모바일하버의 개념설계)

  • Lee, Joo-Hee;Yoon, Seong-Jin;Chung, Hyun;Lee, Phill-Seung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The axiomatic design principles are applied to the conceptual design of semi-submersible type mobile harbor (B1). The process of how the design of mobile harbor is elaborated, evaluated and improved from the very beginning is presented in this paper. The concept of mobile harbor is a functional harbor, which can move to a container ship anchoring out of ports in the deep water to load/unload containers on sea and transfer them to their destination ports. This floating system will innovate the maritime transport and distribution since it will greatly enhance the accessibility of super-sized container ships to existing harbors and harbors without enough infrastructures. Designing a mobile system which can perform the functions of traditional harbors on the floating system requires innovative ideas as well as rigorous validations of each sub systems. In order to enhance the chance of design success, we try to satisfy the design axioms in early stage of conceptual design. We use the zigzagging process for defining Functional Requirements (FR)-Design Parameters (DP) hierarchy due to the complexity of the system. In other words, we decomposed the complexity of the design by FR-DP hierarchy and reduced coupled design logically and systematically. This paper shows applicability of the axiomatic design principles to the field of ocean systems engineering.

Conceptual Design for Mooring Stability System and Equipments of Mobile Harbor (모바일하버 선박의 계류안정화시스템 및 의장장치 개념설계)

  • Lee, Yun-Sok;Jeong, Tae-Gwon;Jung, Chang-Hyun;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.311-317
    • /
    • 2010
  • Mobile Harbor(MH) is a new paradigm for maritime transport system introduced in Korea, the target of which is to carry out ship-to-ship cargo operation rapidly and effectively even under a condition of sea state 3. A MH ship is moored alongside a large container vessel anchored at the defined anchorage and also equipped with gantry cranes for handling containers. The MH study concerned includes rapid container handling system, optimum design for floating structure, hybrid berthing & cargo operation system, design for cargo handling crane, etc. This paper is to deal with a conceptual design of a stabilized mooring system and mooring equipment under a condition of ship-to-ship mooring. In this connection, we suggest a positioning control winch system in order to control heave motions of the MH ship which is to add constant brakepower and stabilized function to an auto-tension winch and mooring equipment used currently in large container ships.

Hydrodynamic Interaction Analysis of Floating Multi-body System

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook;Kim, Young-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • Recently, several problems have occurred in the space, infra-structure, and facility of the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually in this study as an effective solution for these problems. The concept is that of a transfer loader that transfers containers from a large container ship to the harbor on land, and is a catamaran type floating barge. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and effectiveness for working on board. For the safe and effective operation of the two floating bodies (a container ship and the mobile harbor in the near sea detached from the quay), robot arms, novel crane systems, and pneumatic fenders are specially devised with an additional mooring facility or DP (dynamic positioning) system. In this study, this concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.

Wind Force Coefficients Computation of Gantry Crane by Wind Tunnel Experiment and Structural Analysis of the Crane (풍동실험에 의한 갠트리 크레인의 풍력계수 산출과 구조 해석)

  • Lee, Jae-Hwan;Kim, Tae-Wan;Jang, In-Geun;Han, Soon-Hung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.165-170
    • /
    • 2011
  • In this paper, wind force coefficient by wind tunnel experiment is obtained to compute the accurate wind force of the gantry crane model to be used for mobile harbor ship. The first crane model was tested under 20, 30, 40, 52m/s, partially 58m/s and the wind force coefficient is about 2.0 which is very close to the suggested theoretical value. The other is the more reliable crane model and tested under 20, 30, 40m/s also giving the similar realistic wind force coefficient. Also structural analysis of crane model was performed giving the reliable stress level. Since the rolling effect is important for mobile harbor ship, the safety of the crane on the ship needs to be guaranteed. For this, using the computed reaction forces, a tie-down design is suggested which connects the crane and ship to resist the turnover motion of the crane.