• Title/Summary/Keyword: mobile edge network

Search Result 116, Processing Time 0.036 seconds

A Privacy-preserving Image Retrieval Scheme in Edge Computing Environment

  • Yiran, Zhang;Huizheng, Geng;Yanyan, Xu;Li, Su;Fei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.450-470
    • /
    • 2023
  • Traditional cloud computing faces some challenges such as huge energy consumption, network delay and single point of failure. Edge computing is a typical distributed processing platform which includes multiple edge servers closer to the users, thus is more robust and can provide real-time computing services. Although outsourcing data to edge servers can bring great convenience, it also brings serious security threats. In order to provide image retrieval while ensuring users' data privacy, a privacy preserving image retrieval scheme in edge environment is proposed. Considering the distributed characteristics of edge computing environment and the requirement for lightweight computing, we present a privacy-preserving image retrieval scheme in edge computing environment, which two or more "honest but curious" servers retrieve the image quickly and accurately without divulging the image content. Compared with other traditional schemes, the scheme consumes less computing resources and has higher computing efficiency, which is more suitable for resource-constrained edge computing environment. Experimental results show the algorithm has high security, retrieval accuracy and efficiency.

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

A Study on the Analysis of Security Requirements through Literature Review of Threat Factors of 5G Mobile Communication

  • DongGyun Chu;Jinho Yoo
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • The 5G is the 5th generation mobile network that provides enhanced mobile broadband, ultra-reliable & low latency communications, and massive machine-type communications. New services can be provided through multi-access edge computing, network function virtualization, and network slicing, which are key technologies in 5G mobile communication. However, these new technologies provide new attack paths and threats. In this paper, we analyzed the overall threats of 5G mobile communication through a literature review. First, defines 5G mobile communication, analyzes its features and technology architecture, and summarizes possible security issues. Addition, it presents security threats from the perspective of user devices, radio access network, multi-access edge computing, and core networks that constitute 5G mobile communication. After that, security requirements for threat factors were derived through literature analysis. The purpose of this study is to conduct a fundamental analysis to examine and assess the overall threat factors associated with 5G mobile communication. Through this, it will be possible to protect the information and assets of individuals and organizations that use 5G mobile communication technology, respond to various threat situations, and increase the overall level of 5G security.

A Sufferage offloading tasks method for multiple edge servers

  • Zhang, Tao;Cao, Mingfeng;Hao, Yongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3603-3618
    • /
    • 2022
  • The offloading method is important when there are multiple mobile nodes and multiple edge servers. In the environment, those mobile nodes connect with edge servers with different bandwidths, thus taking different time and energy for offloading tasks. Considering the system load of edge servers and the attributes (the number of instructions, the size of files, deadlines, and so on) of tasks, the energy-aware offloading problem becomes difficult under our mobile edge environment (MCE). Most of the past work mainly offloads tasks by judging where the job consumes less energy. But sometimes, one task needs more energy because the preferred edge servers have been overloaded. Those methods always do not pay attention to the influence of the scheduling on the future tasks. In this paper, first, we try to execute the job locally when the job costs a lower energy consumption executed on the MD. We suppose that every task is submitted to the mobile server which has the highest bandwidth efficiency. Bandwidth efficiency is defined by the sending ratio, the receiving ratio, and their related power consumption. We sort the task in the descending order of the ratio between the energy consumption executed on the mobile server node and on the MD. Then, we give a "suffrage" definition for the energy consumption executed on different mobile servers for offloading tasks. The task selects the mobile server with the largest suffrage. Simulations show that our method reduces the execution time and the related energy consumption, while keeping a lower value in the number of uncompleted tasks.

A cache placement algorithm based on comprehensive utility in big data multi-access edge computing

  • Liu, Yanpei;Huang, Wei;Han, Li;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3892-3912
    • /
    • 2021
  • The recent rapid growth of mobile network traffic places multi-access edge computing in an important position to reduce network load and improve network capacity and service quality. Contrasting with traditional mobile cloud computing, multi-access edge computing includes a base station cooperative cache layer and user cooperative cache layer. Selecting the most appropriate cache content according to actual needs and determining the most appropriate location to optimize the cache performance have emerged as serious issues in multi-access edge computing that must be solved urgently. For this reason, a cache placement algorithm based on comprehensive utility in big data multi-access edge computing (CPBCU) is proposed in this work. Firstly, the cache value generated by cache placement is calculated using the cache capacity, data popularity, and node replacement rate. Secondly, the cache placement problem is then modeled according to the cache value, data object acquisition, and replacement cost. The cache placement model is then transformed into a combinatorial optimization problem and the cache objects are placed on the appropriate data nodes using tabu search algorithm. Finally, to verify the feasibility and effectiveness of the algorithm, a multi-access edge computing experimental environment is built. Experimental results show that CPBCU provides a significant improvement in cache service rate, data response time, and replacement number compared with other cache placement algorithms.

Ultra-low-latency services in 5G systems: A perspective from 3GPP standards

  • Jun, Sunmi;Kang, Yoohwa;Kim, Jaeho;Kim, Changki
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.721-733
    • /
    • 2020
  • Recently, there is an increasing demand for ultra-low-latency (ULL) services such as factory automation, autonomous driving, and telesurgery that must meet an end-to-end latency of less than 10 ms. Fifth-generation (5G) New Radio guarantees 0.5 ms one-way latency, so the feasibility of ULL services is higher than in previous mobile communications. However, this feasibility ensures performance at the radio access network level and requires an innovative 5G network architecture for end-to-end ULL across the entire 5G system. Hence, we survey in detailed two the 3rd Generation Partnership Party (3GPP) standardization activities to ensure low latency at network level. 3GPP standardizes mobile edge computing (MEC), a low-latency solution at the edge network, in Release 15/16 and is standardizing time-sensitive communication in Release 16/17 for interworking 5G systems and IEEE 802.1 time-sensitive networking (TSN), a next-generation industry technology for ensuring low/deterministic latency. We developed a 5G system based on 3GPP Release 15 to support MEC with a potential sub-10 ms end-to-end latency in the edge network. In the near future, to provide ULL services in the external network of a 5G system, we suggest a 5G-IEEE TSN interworking system based on 3GPP Release 16/17 that meets an end-to-end latency of 2 ms.

Validation of Cloud Robotics System in 5G MEC for Remote Execution of Robot Engines (5G MEC 기반 로봇 엔진 원격 구동을 위한 클라우드 로보틱스 시스템 구성 및 실증)

  • Gu, Sewan;Kang, Sungkyu;Jeong, Wonhong;Moon, Hyungil;Yang, Hyunseok;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2022
  • We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.

Deep Reinforcement Learning-Based Edge Caching in Heterogeneous Networks

  • Yoonjeong, Choi; Yujin, Lim
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.803-812
    • /
    • 2022
  • With the increasing number of mobile device users worldwide, utilizing mobile edge computing (MEC) devices close to users for content caching can reduce transmission latency than receiving content from a server or cloud. However, because MEC has limited storage capacity, it is necessary to determine the content types and sizes to be cached. In this study, we investigate a caching strategy that increases the hit ratio from small base stations (SBSs) for mobile users in a heterogeneous network consisting of one macro base station (MBS) and multiple SBSs. If there are several SBSs that users can access, the hit ratio can be improved by reducing duplicate content and increasing the diversity of content in SBSs. We propose a Deep Q-Network (DQN)-based caching strategy that considers time-varying content popularity and content redundancy in multiple SBSs. Content is stored in the SBS in a divided form using maximum distance separable (MDS) codes to enhance the diversity of the content. Experiments in various environments show that the proposed caching strategy outperforms the other methods in terms of hit ratio.

An Efficient Service Function Chains Orchestration Algorithm for Mobile Edge Computing

  • Wang, Xiulei;Xu, Bo;Jin, Fenglin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4364-4384
    • /
    • 2021
  • The dynamic network state and the mobility of the terminals make the service function chain (SFC) orchestration mechanisms based on static and deterministic assumptions hard to be applied in SDN/NFV mobile edge computing networks. Designing dynamic and online SFC orchestration mechanism can greatly improve the execution efficiency of compute-intensive and resource-hungry applications in mobile edge computing networks. In order to increase the overall profit of service provider and reduce the resource cost, the system running time is divided into a sequence of time slots and a dynamic orchestration scheme based on an improved column generation algorithm is proposed in each slot. Firstly, the SFC dynamic orchestration problem is formulated as an integer linear programming (ILP) model based on layered graph. Then, in order to reduce the computation costs, a column generation model is used to simplify the ILP model. Finally, a two-stage heuristic algorithm based on greedy strategy is proposed. Four metrics are defined and the performance of the proposed algorithm is evaluated based on simulation. The results show that our proposal significantly provides more than 30% reduction of run time and about 12% improvement in service deployment success ratio compared to the Viterbi algorithm based mechanism.

Performance Evaluation of Efficient Vision Transformers on Embedded Edge Platforms (임베디드 엣지 플랫폼에서의 경량 비전 트랜스포머 성능 평가)

  • Minha Lee;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.