Yiran, Zhang;Huizheng, Geng;Yanyan, Xu;Li, Su;Fei, Liu
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.2
/
pp.450-470
/
2023
Traditional cloud computing faces some challenges such as huge energy consumption, network delay and single point of failure. Edge computing is a typical distributed processing platform which includes multiple edge servers closer to the users, thus is more robust and can provide real-time computing services. Although outsourcing data to edge servers can bring great convenience, it also brings serious security threats. In order to provide image retrieval while ensuring users' data privacy, a privacy preserving image retrieval scheme in edge environment is proposed. Considering the distributed characteristics of edge computing environment and the requirement for lightweight computing, we present a privacy-preserving image retrieval scheme in edge computing environment, which two or more "honest but curious" servers retrieve the image quickly and accurately without divulging the image content. Compared with other traditional schemes, the scheme consumes less computing resources and has higher computing efficiency, which is more suitable for resource-constrained edge computing environment. Experimental results show the algorithm has high security, retrieval accuracy and efficiency.
Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.10
/
pp.4849-4864
/
2019
Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.
The 5G is the 5th generation mobile network that provides enhanced mobile broadband, ultra-reliable & low latency communications, and massive machine-type communications. New services can be provided through multi-access edge computing, network function virtualization, and network slicing, which are key technologies in 5G mobile communication. However, these new technologies provide new attack paths and threats. In this paper, we analyzed the overall threats of 5G mobile communication through a literature review. First, defines 5G mobile communication, analyzes its features and technology architecture, and summarizes possible security issues. Addition, it presents security threats from the perspective of user devices, radio access network, multi-access edge computing, and core networks that constitute 5G mobile communication. After that, security requirements for threat factors were derived through literature analysis. The purpose of this study is to conduct a fundamental analysis to examine and assess the overall threat factors associated with 5G mobile communication. Through this, it will be possible to protect the information and assets of individuals and organizations that use 5G mobile communication technology, respond to various threat situations, and increase the overall level of 5G security.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.11
/
pp.3603-3618
/
2022
The offloading method is important when there are multiple mobile nodes and multiple edge servers. In the environment, those mobile nodes connect with edge servers with different bandwidths, thus taking different time and energy for offloading tasks. Considering the system load of edge servers and the attributes (the number of instructions, the size of files, deadlines, and so on) of tasks, the energy-aware offloading problem becomes difficult under our mobile edge environment (MCE). Most of the past work mainly offloads tasks by judging where the job consumes less energy. But sometimes, one task needs more energy because the preferred edge servers have been overloaded. Those methods always do not pay attention to the influence of the scheduling on the future tasks. In this paper, first, we try to execute the job locally when the job costs a lower energy consumption executed on the MD. We suppose that every task is submitted to the mobile server which has the highest bandwidth efficiency. Bandwidth efficiency is defined by the sending ratio, the receiving ratio, and their related power consumption. We sort the task in the descending order of the ratio between the energy consumption executed on the mobile server node and on the MD. Then, we give a "suffrage" definition for the energy consumption executed on different mobile servers for offloading tasks. The task selects the mobile server with the largest suffrage. Simulations show that our method reduces the execution time and the related energy consumption, while keeping a lower value in the number of uncompleted tasks.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.3892-3912
/
2021
The recent rapid growth of mobile network traffic places multi-access edge computing in an important position to reduce network load and improve network capacity and service quality. Contrasting with traditional mobile cloud computing, multi-access edge computing includes a base station cooperative cache layer and user cooperative cache layer. Selecting the most appropriate cache content according to actual needs and determining the most appropriate location to optimize the cache performance have emerged as serious issues in multi-access edge computing that must be solved urgently. For this reason, a cache placement algorithm based on comprehensive utility in big data multi-access edge computing (CPBCU) is proposed in this work. Firstly, the cache value generated by cache placement is calculated using the cache capacity, data popularity, and node replacement rate. Secondly, the cache placement problem is then modeled according to the cache value, data object acquisition, and replacement cost. The cache placement model is then transformed into a combinatorial optimization problem and the cache objects are placed on the appropriate data nodes using tabu search algorithm. Finally, to verify the feasibility and effectiveness of the algorithm, a multi-access edge computing experimental environment is built. Experimental results show that CPBCU provides a significant improvement in cache service rate, data response time, and replacement number compared with other cache placement algorithms.
Recently, there is an increasing demand for ultra-low-latency (ULL) services such as factory automation, autonomous driving, and telesurgery that must meet an end-to-end latency of less than 10 ms. Fifth-generation (5G) New Radio guarantees 0.5 ms one-way latency, so the feasibility of ULL services is higher than in previous mobile communications. However, this feasibility ensures performance at the radio access network level and requires an innovative 5G network architecture for end-to-end ULL across the entire 5G system. Hence, we survey in detailed two the 3rd Generation Partnership Party (3GPP) standardization activities to ensure low latency at network level. 3GPP standardizes mobile edge computing (MEC), a low-latency solution at the edge network, in Release 15/16 and is standardizing time-sensitive communication in Release 16/17 for interworking 5G systems and IEEE 802.1 time-sensitive networking (TSN), a next-generation industry technology for ensuring low/deterministic latency. We developed a 5G system based on 3GPP Release 15 to support MEC with a potential sub-10 ms end-to-end latency in the edge network. In the near future, to provide ULL services in the external network of a 5G system, we suggest a 5G-IEEE TSN interworking system based on 3GPP Release 16/17 that meets an end-to-end latency of 2 ms.
We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.
With the increasing number of mobile device users worldwide, utilizing mobile edge computing (MEC) devices close to users for content caching can reduce transmission latency than receiving content from a server or cloud. However, because MEC has limited storage capacity, it is necessary to determine the content types and sizes to be cached. In this study, we investigate a caching strategy that increases the hit ratio from small base stations (SBSs) for mobile users in a heterogeneous network consisting of one macro base station (MBS) and multiple SBSs. If there are several SBSs that users can access, the hit ratio can be improved by reducing duplicate content and increasing the diversity of content in SBSs. We propose a Deep Q-Network (DQN)-based caching strategy that considers time-varying content popularity and content redundancy in multiple SBSs. Content is stored in the SBS in a divided form using maximum distance separable (MDS) codes to enhance the diversity of the content. Experiments in various environments show that the proposed caching strategy outperforms the other methods in terms of hit ratio.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.12
/
pp.4364-4384
/
2021
The dynamic network state and the mobility of the terminals make the service function chain (SFC) orchestration mechanisms based on static and deterministic assumptions hard to be applied in SDN/NFV mobile edge computing networks. Designing dynamic and online SFC orchestration mechanism can greatly improve the execution efficiency of compute-intensive and resource-hungry applications in mobile edge computing networks. In order to increase the overall profit of service provider and reduce the resource cost, the system running time is divided into a sequence of time slots and a dynamic orchestration scheme based on an improved column generation algorithm is proposed in each slot. Firstly, the SFC dynamic orchestration problem is formulated as an integer linear programming (ILP) model based on layered graph. Then, in order to reduce the computation costs, a column generation model is used to simplify the ILP model. Finally, a two-stage heuristic algorithm based on greedy strategy is proposed. Four metrics are defined and the performance of the proposed algorithm is evaluated based on simulation. The results show that our proposal significantly provides more than 30% reduction of run time and about 12% improvement in service deployment success ratio compared to the Viterbi algorithm based mechanism.
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.3
/
pp.89-100
/
2023
Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.