• Title/Summary/Keyword: mobile control

Search Result 3,997, Processing Time 0.032 seconds

Wireless Communication Real-Time Travelling Control of Mobile Robot by Voice Command (음성명령에 의한 모바일로봇의 무선통신 실시간 주행제어)

  • Shim, Byoung-Kyun;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.33-38
    • /
    • 2011
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

Distributed Relay Power Control Scheme for Multi-cell OFDM-TDD Based Mobile Relay System (OFDM-TDD 기반 이동 릴레이 시스템을 위한 다중 셀 분산형 릴레이 전력 제어 방법)

  • Cho, Young-Min;Park, Jeong-Hun;Hwang, Seung-Gye;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.562-570
    • /
    • 2011
  • In this paper, a distributed mobile relay power control (DMRPC) scheme for maximizing individual cell throughput is proposed for mobile relay aided multi-cell orthogonal frequency division multiplexing (OFDM)-time division duplex (TDD) system. In the system with DMRPC, the power levels of relay's are controlled by individual cell without cell cooperation and signalling overhead. It is demonstrated by numerical simulation that DMRPC provides the better cell throughput performance than either the full power relay aided system or conventional system without relay does. Moreover, it is also shown that relay aided systems with DMRPC, and the conventional system have almost identical cell edge throughput, while full power relay aided systems show worse performance in cell edge throughput.

Experimental Studies of a Cascaded Controller with a Neural Network for Position Tracking Control of a Mobile Robot Based on a Laser Sensor (레이저 센서 기반의 Cascaded 제어기 및 신경회로망을 이용한 이동로봇의 위치 추종 실험적 연구)

  • Jang, Pyung-Soo;Jang, Eun-Soo;Jeon, Sang-Woon;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.625-633
    • /
    • 2004
  • In this paper, position control of a car-like mobile robot using a neural network is presented. positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as a reference, the robot posture is corrected by a cascaded controller. To improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The neural network functions as a compensator to minimize the positional errors in on-line fashion. A car-like mobile robot is built as a test-bed and experimental studies of several controllers are conducted and compared. Experimental results show that the best position control performance can be achieved by a cascaded controller with a neural network.

Neural Network Based Guidance Control of a Mobile Robot

  • Jang, Pyoung-Soo;Jang, Eun-Soo;Jeon, Sang-Woon;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1099-1104
    • /
    • 2003
  • In this paper, the position control of a car-like mobile robot using neural network is proposed. The positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as references, the robot posture by localization is corrected by a cascaded controller. In order to improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The remotely located neural network filter modifies the reference trajectories to minimize the positional errors by wireless communication. A car-like mobile robot is built as a test-bed and experimental studies of proposed several control algorithms are performed. It turns out that the best position control can be achieved by a cascaded controller with neural network.

  • PDF

Accounting Model for Mobile RFID Service (모바일 RFID 서비스를 위한 과금 모델)

  • Lee, Ho-Seon;Kim, Moon;Moon, Tae-Wook;Cho, Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.76-79
    • /
    • 2007
  • RFID is issued as a core technology for Ubiquitous environment recently. Especially, Mobile RFID which is converged with RFID and wireless internet, provides new services to users, increased added-value to service providers. For commercial service of Mobile RFID, it needs an accounting service. The Diameter Base Protocol, mostly used for authentication, authorization, and accounting service, supports only deferred accounting service. For more variable accounting policy, Diameter Credit-Control Application which is capable of prepayment accounting, also should be considered. In this paper, a new accounting model with Diameter Credit-Control Application for Mobile RFID service is proposed.

  • PDF

Optimization of Mobile Robot Predictive Controllers Under General Constraints (일반제한조건의 이동로봇예측제어기 최적화)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.602-610
    • /
    • 2018
  • The model predictive control is an effective method to optimize the current control input that predicts the current control state and the future error using the predictive model of the control system when the reference trajectory is known. Since the control input can not have a physically infinitely large value, a predictive controller design with constraints should be considered. In addition, the reference model $A_r$ and the weight matrices Q, R that determine the control performance of the predictive controller are not optimized as arbitrarily designated should be considered in the controller design. In this study, we construct a predictive controller of a mobile robot by transforming it into a quadratic programming problem with constraints, The control performance of the mobile robot can be improved by optimizing the control parameters of the predictive controller that determines the control performance of the mobile robot using genetic algorithm. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.

Real-Time Prediction of Optimal Control Parameters for Mobile Robots based on Estimated Strength of Ground Surface (노면의 강도 추정을 통한 자율 주행 로봇의 실시간 최적 주행 파라미터 예측)

  • Kim, Jayoung;Lee, Jihong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.58-69
    • /
    • 2014
  • This paper proposes a method for predicting maximum friction coefficients and optimal slip ratios as optimal control parameters for traction control or slip control of autonomous mobile robots on rough terrain. This paper focuses on strength of ground surface which indicates different characteristics depending on material types on surface. Strength of various material types can be estimated by Willoughby sinkage model and by a developed testbed which can measure forces, velocities, and displacements generated by wheel-terrain interaction. Estimated strength is collaborated on building improved Brixius model with friction-slip data from experiments with the testbed over sand and grass material. Improved Brixius model covers widespread material types in outdoor environments on predicting friction-slip characteristics depending on strength of ground surface. Thus, a prediction model for obtaining optimal control parameters is derived by partial differentiation of the improved Brixius model with respect to slip. This prediction model can be applied to autonomous mobile robots and finally gives secure maneuverability on rough terrain. Proposed method is verified by various experiments under similar conditions with the ones for real outdoor robots.

Development of a CAN-based Controllsr for Mobile Robots using a DSP TMS320C32 (DSP를 이용한 CAN 기반 이동로봇 제어기 개발)

  • Kim, Dong-Hun;You, Bum-Jae;Hwang-Bo, Myung;Lim, Myo-Taeg;Oh, Sang-Rok;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2784-2786
    • /
    • 2000
  • Mobile robots include control modules for autonomous obstacle avoidance and navigation. They are range modules to detect and avoid obstacles. motor control modules to operate two wheels. and encoder modules for localization. There is needed an appropriate controller for each modules. In this paper. a control system. including 18 channels for Sonar sensors. 4 channels for PWM modules. and 4 channels for encoder modules. is proposed using TMS320C32 DSP adopted with CAN. The board communicates with other modules by CAN. so that mobile robots can perform several tasks in real time. So we can realize on autonomous mobile robot with basic functions such as obstacle avoidance by using the developed controller. Especially. this controller has 100 msec scan time for 16 sonar sensors and can detect closer objects comparing with standard sonar sensors.

  • PDF

Kinematic Modeling of Chained Form Mobile Robot

  • Han, Jae-Yong;Lee, Jae-Hoon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2057-2062
    • /
    • 2003
  • Chained form mobile robots have been studied from the viewpoint of the control and analysis of nonholonomic mechanical systems in literature. However, researches for the detailed closed form kinematic modeling are rarely progressed. Nothing that a chained form mobile robot can be considered as a parallel system including several chains and wheels, the transfer method using augmented generalized coordinates is applied to obtain inverse and forward kinematic models of chained form mobile robots. Various numerical simulations are conducted to verify the effectiveness of the suggested kinematic model.

  • PDF

Study of a Two-wheel Mobile Robot with Linear Workspace Extension Structures (선형 작업 영역 확장 구조를 가진 두 바퀴 구동 모바일 로봇에 대한 연구)

  • Bae, Yeong-Geol;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a two-wheel balancing mobile robot with linear workspace extension structures. The two-wheel mobile robot has two linear motions at the waist and shoulder to have extended workspace. The linear motion of the waist and shoulder provides some structural advantages. A dynamic equation of the simplified robot system is derived. Simulation studies of the position control of the robot system are performed based on the dynamic equations. The dynamic relationship between a two-wheel mobile system and linear extension mechanism is observed by simulation studies.