• 제목/요약/키워드: mobile application model

검색결과 612건 처리시간 0.03초

LEAP 모델 적용을 통한 대학단위 온실가스 감축안 도출 - 한양대학교 안산캠퍼스 대상으로 (Greenhouse Gas Reduction Scenario from LEAP Model Application to a University Campus-For Hanyang University Ansan Campus)

  • 박효정;정혜진;이승묵;박재우
    • 대한환경공학회지
    • /
    • 제34권4호
    • /
    • pp.280-287
    • /
    • 2012
  • 본 연구에서는 대학 캠퍼스 단위에서의 온실가스 인벤토리 구축을 위해 한양대학교 안산캠퍼스를 대상으로 직접 배출원(도시가스, 실내등유, 이동연소), 간접 배출원(전력), 기타 배출원(항공, 수도) 세 부분으로 온실가스 배출원을 규명하였으며, 2007년부터 2009년까지 온실가스 배출원별 에너지 사용량에 따른 온실가스 배출량을 산정하였다. 그 결과, 전체 온실가스 배출영역 중 가장 많은 부분을 차지하는 것은 간접배출의 전력부문으로 전체 온실가스 배출량의 56.7% 차지하는 것을 확인하였다. 또한, 대학본부에서 수행 가능한 온실가스 감축시나리오 및 학교구성원이 수행 가능한 온실가스 감축 실천시나리오를 대학환경에 적합하게 설계한 후 LEAP 모델을 이용하여 2007년부터 2020년까지의 온실가스 감축잠재량을 평가하였다. 그 결과, 감축시나리오 적용시 2020년 BAU(배출전망치) 대비 2020년에는 직접배출 중 고정연소에서 63.34 ton $CO_{2eq}/yr$, 이동연소에서 221.1 ton $CO_{2eq}/yr$ 감축되었으며, 간접배출 중 조명에서는 4,637.34 ton $CO_{2eq}/yr$ 온실가스가 감축되는 것으로 산출되었다. 또한, 실천시나리오를 통한 온실가스 감축잠재량은 1293.76 ton $CO_{2eq}/yr$으로 산출되었다. 따라서, 한양대학교 안산 캠퍼스에 감축 실천 시나리오를 모두 적용한다면 2020년에는 2020년 BAU 대비 온실가스를 총 24% 감축할 수 있을 것으로 추정된다.

공간 빅데이터를 위한 동태적 시각화 모형의 개발과 적용 (Development and Application of Dynamic Visualization Model for Spatial Big Data)

  • 김동한;김다윗
    • 한국지리정보학회지
    • /
    • 제21권1호
    • /
    • pp.57-70
    • /
    • 2018
  • 빅데이터 시대로 진입하게 되면서 전 세계적으로 생산 및 공유되어지는 무수한 양의 데이터를 활용하고자 하는 노력이 곳곳에서 이루어지고 있다. 특히, 이러한 데이터와 발전된 기술을 통해 국토와 도시 공간에서 일어나는 현상들을 분석함으로써 기존의 전통적 방식에서 보여주지 못하던 새로운 정보를 제공 할 수 있는 가능성과 이에 대한 기대가 커지고 있다. 따라서 기존의 틀을 넘어서는 정보의 구득 방식, 활용 및 전달을 위한 과학적이고 효과적인 방법과 수단이 필요하며 이를 공공의 의사결정의 지원수단으로 활용하려는 노력도 함께 요구된다. 이 연구는 국토도시계획지원(planning support)의 한 수단으로 공간 빅데이터의 동태적 시각화 모형의 개발과 실증적용에 주요한 목적을 두고 수행하였다. 주요한 내용은 다음과 같다. 첫째, 데이터 시각화의 개념과 의미와 함께 계획지원 또는 의사결정에서의 공간 빅데이터 시각화의 적용이 가지는 효용성을 살펴보고 시사점을 고찰하였다. 둘째, 공간 빅데이터 동태적 시각화 모형을 개발하고, 제주도를 대상으로 실증적용을 수행하였다. 도시 공간의 현황 파악과 문제 해결을 지원하기 위한 데이터의 시각화 자체는 새로운 것은 아니다. 그러나 빅데이터와 새로운 시각화 툴을 활용할 경우 기존의 방식과는 차별되는 결과를 도출할 수 있다. 본 연구는 위와 같은 내용을 바탕으로 향후 계획지원을 위한 데이터 시각화의 활용성을 체계적으로 검토하고, 이를 확대하기 위한 방안을 구축하는데 필요한 시사점을 제시하였다.

도로 차선 재료의 공용수명 예측방법 (Methodology to Predict Service Lives of Pavement Marking Materials)

  • 오흥운;이현석;장정화;강재수
    • 한국도로학회논문집
    • /
    • 제10권4호
    • /
    • pp.151-159
    • /
    • 2008
  • 차선의 밝기를 나타내는 반사성능은 교통량, 도색 후 경과시간, 차선재료, 색상 등에 따라 지역별로 차이가 발생한다. 본 연구에서는 고속도로에서 조사된 차선 성능의 자료를 바탕으로 교통량과 차선의 공용수명을 독립변수로 하고 차선의 성능을 종속변수로 하는 회귀식을 산정하였다. 전국의 고속도로를 대상으로 모바일 차선반사 성능 차량을 사용하여 $2005{\sim}2006$년의 2년동안 3개월 간격으로 차선의 성능을 추적 조사하였다. 축적된 DB에는 차선의 성능뿐 아니라 차선의 재료, 색상, 기하구조, 교통량, 도색시기 등이 포함되어 있다. 본 연구에서 추적 조사된 차선성능을 기초로하여 다양한 환경에서의 차선재료의 성능을 비교 분석하여 여러 인자에 의한 차선성능 곡선을 도출하였다. 차선성능 곡선을 통해 지역별 교통량과 도색 이후의 시간의 경과에 따른 차선의 성능을 예측할 수 있었다. 선형함수, 로그함수, 지수함수, 음지수함수 등을 이용하여 차선의 성능을 나타내는 회귀식과 변동을 추정한 후, 결정계수가 가장 높고, 현장측정치와 가장 유사한 모형을 차선의 성능 예측모형으로 결정하였다. 현장조사 결과와의 검증결과, 차선성능 예측 모델은 90% 신뢰도에서 유의함을 볼 수 있었고, 특히 누적 교통량의 증가에 따라 현장 데이터와 높은 연관성을 보여주었다. 따라서 본 방법론에 의한 차선수명 예측 모델을 통해 차선의 공용수명과 잔존수명을 예측하여 도색시기를 결정할 수 있다.

  • PDF

안드로이드 기반 앱 악성코드 탐지를 위한 Feature 선정 및 학습모델 제안 (Suggestion of Selecting features and learning models for Android-based App Malware Detection)

  • 배세진;이정수;백남균
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.377-380
    • /
    • 2022
  • 앱(App)이라 불리는 응용프로그램은 모바일 기기 등에 다운받아 사용 가능하다. 그 중 안드로이드(Android) 기반 앱은 오픈소스 기반으로 구현되어 누구나 악용 가능하다는 단점이 있지만, 아주 일부분의 소스코드를 공개하는 iOS와는 달리 안드로이드는 오픈소스로 구현되어있기 때문에 코드를 분석할 수 있다는 장점도 있다. 하지만, 오픈소스 기반의 안드로이드 앱은 누구나 소스코드 변경에 참여 가능하기 때문에 그만큼 악성코드가 많아지고 종류 또한 다양해질 수밖에 없다. 단기간에 기하급수적으로 늘어나는 악성코드는 사람이 일일이 탐지하기 어려워 AI를 활용하여 악성코드를 탐지하는 기법을 사용하는 것이 효율적이다. 기존 대부분의 악성 앱 탐지 방안은 Feature를 추출하여 악성 앱을 탐지하는 방안이 대부분이다. 따라서 Feature 추출 후 학습에 사용할 최적의 Feature를 선정(Selection)하는 3가지 방안을 제안한다. 마지막으로, 최적의 Feature로 모델링을 하는 단계에서 단일 모델 이외에도 앙상블 기법을 사용한다. 앙상블 기법은 이미 여러 연구에서 나와 있듯이 단일 모델의 성능을 뛰어넘는 결과를 보여주고 있다. 따라서 본 논문에서는 안드로이드 앱(App) 기반 악성코드 탐지 최적의 Feature 선정과 학습모델을 구현하는 방안을 제시한다.

  • PDF

멀티미디어 기기 활용과 유비쿼터스 영어 교육환경 (Multimedia Application and Ubiquitous English Education Environment)

  • 미쉘 미희 최
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권3호
    • /
    • pp.393-399
    • /
    • 2012
  • 학생들이 다른 언어를 배우고 익히도록 동기부여를 하기 위해 기발한 독창성과 새로운 기술을 필요로 할 것이다. 멀티미디어를 이용하면 수업과 과제를 모든 학생들에게 흥미롭게 해줄 것 이다. 그들에게 관심이 있는 스마트 폰의 사용과, 노트북과 무선 인터넷의 사용으로 학생들은 그들의 언어 기술을 실제로 어디에서나 공부할 수 있을 것 이다. 예를들어 팟캐스트, 인터넷망을 통해 다양한 콘텐츠를 제공하는 서비스 Podcasts 도구 방법 등을 통해 ESL(English as a Second Language) 학습이 매우 용이하게 되었다. 즉 이러한 멀티미디어 tools를 이용한 외국어 듣기 연습 서비스 등 다양한 교수 학습방법 개발이 필요하다. 효율적인 영어 교육을 위한 도입된 이러한 여러 멀티미디어 기기의 사용은 여러 가지 독특한 장점을 가지고 있다. 본 연구에서 영어 교육을 최대화하기 위해 멀티미디어의 특징과 그 활용에 대해 연구하고자 한다. 디지털교과서 및 영어 수업을 위한 멀티미디어 콘텐츠 도구 활용, 인터넷 방송은 물론 원격화상 수업, 사이버 학습 등 1:1 영상 교육을 이용한 유비쿼터스 학습 환경을 제시하고자 한다. 더 나아가 최첨단 u-러닝 기기의 체험을 통해 미래 교육 변화를 조망하고 또한 다양한 수업기기와 변화된 수업시스템 모델을 통해 영어 교육의 새로운 방향을 제시하고자 한다.

자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구 (A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification)

  • 추엔 팜;신휴성
    • 터널과지하공간
    • /
    • 제30권5호
    • /
    • pp.462-472
    • /
    • 2020
  • 암종 분류은 현장의 지질학적 또는 지반공학적 특성 파악을 위해 요구되는 매우 기본적인 행위이나 암석의 성인, 지역, 지질학적 이력 특성에 따라 동일 암종이라 하여도 매우 다양한 형태와 색 조성을 보이므로 깊은 지질학적 학식과 경험 없이는 쉬운 일은 아니다. 또한, 다른 여러 분야의 분류 작업에서 딥러닝 영상 처리 기법들이 성공적으로 적용되고 있으며, 지질학적 분류나 평가 분야에서도 딥러닝 기법의 적용에 대한 관심이 증대되고 있다. 따라서, 본 연구에서는 동일 암종임에도 다양한 형태와 색을 갖게 되는 실제 상황을 감안하여, 정확한 자동 암종 분류를 위한 딥러닝 기법의 적용 가능성에 대해 검토하였다. 이러한 기법은 향후에 현장 암종분류 작업을 수행하는 현장 기술자들을 지원할 수 있는 효과적인 툴로 활용 가능할 것이다. 본 연구에서 사용된 딥러닝 알고리즘은 매우 깊은 네트워크 구조로 객체 인식과 분류를 할 수 있는 것으로 잘 알려진 'ResNet' 계열의 딥러닝 알고리즘을 사용하였다. 적용된 딥러닝에서는 10개의 암종에 대한 다양한 암석 이미지들을 학습시켰으며, 학습 시키지 않은 암석 이미지들에 대하여 84% 수준 이상의 암종 분류 정확도를 보였다. 본 결과로 부터 다양한 성인과 지질학적 이력을 갖는 다양한 형태와 색의 암석들도 지질 전문가 수준으로 분류해 낼 수 있는 것으로 파악되었다. 나아가 다양한 지역과 현장에서 수집된 암석의 이미지와 지질학자들의 분류 결과가 학습데이터로 지속적으로 누적이 되어 재학습에 반영된다면 암종분류 성능은 자동으로 향상될 것이다.

합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로 (Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image)

  • 서이안;신경식
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.1-19
    • /
    • 2018
  • 최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.

지식 누적을 이용한 실시간 주식시장 예측 (A Real-Time Stock Market Prediction Using Knowledge Accumulation)

  • 김진화;홍광헌;민진영
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.109-130
    • /
    • 2011
  • 연속발생 데이터는 데이터의 원천으로부터 데이터 저장소로 연속적으로 축적이 되는 데이터를 말한다. 이렇게 축적된 데이터의 크기는 시간이 지남에 따라 점점 커진다. 또한 이러한 대용량 데이터에서 정보를 추출하기 위해서는 저장공간, 시간, 그리고 많은 자원이 필요하다. 이러한 연속발생 데이터의 특성은 시간이 지남에 따라 축적된 대용량 데이터의 이용을 어렵고 고비용이 되게 한다. 만약 정보나 패턴을 추출할 때 누적된 전체 발생 데이터 중에서 최근의 일부만 사용 한다면 적은 일부 표본의 사용의 문제로 인하여 전체 데이터 사용에서 발견될 수 있는 유용한 정보의 유실이 있을 수 있다. 이러한 문제점을 해결하기 위해서 본 연구는 연속발생 데이터를 발생 시점에서 계속 모으기 보다 이러한 발생되는 데이터에서 규칙을 추출하여 효율적으로 지식을 관리하고자 한다. 이 방법은 기존의 방법에 비하여 적은 양의 데이터 저장공간을 필요로 한다. 또한 이렇게 축적된 규칙집합은 미래에 예측을 위해서 언제든 실시간 예측을 할 수 있게 준비가 된다. 여러 예측 모델을 결합시키는 방법인 앙상블 이론에 의하면 본 연구가 제시하는 데로 체계적으로 규칙집합을 시간에 따라 융합시킬 경우 더 나은 예측 성과가 가능하다. 본 연구는 주식시장의 변동성을 예측하기 위하여 주식시장 데이터를 사용하였다. 본 연구는 이 데이터를 이용해 본 연구가 제시하는 방법과 기존의 방법의 예측 정확도를 비교 하였다.

다양한 무선 환경에서 끊김 없는 이동성 관리를 위한 사용자 정의 네트워크 모델 및 구조 (Model and Architecture of User-Defined Networks for Seamless Mobility Management in Diverse Wireless Environment)

  • 천승만;나재욱;이승무;최준혁;박종태
    • 대한전자공학회논문지TC
    • /
    • 제48권11호
    • /
    • pp.35-43
    • /
    • 2011
  • 본 논문에서는 사용자가 각기 다른 구조를 가진 다양한 무선랜 네트워크 (Wireless Local Area Network) 들 간 핸드오버시 사용자에게 끊김 없는 인터넷 연결을 제공하기 위한 새로운 이동성 관리 구조 및 모델을 제시한다. IETF에서는 MIPv6와 이를 확장한 HMIPv6, PMIPv6 등의 많은 이동성 관리를 위한 연구가 진행되었지만 현실적으로 무선 접속점이 서로 다른 개인 관리자 또는 ISP에 의해 관리되고 있기 때문에 접속 인증 방법 및 이동성 프로토콜이 달라 이러한 이동성 관리 프로토콜은 이동 단말의 핸드오버 시 응용 서비스에 대한 QoS (Quality of Service)를 보장 할 수 없다. 이러한 문제점을 해결하기 위해 본 논문에서는 사용자가 무선 네트워크를 생성하여 핸드오버 시 QoS를 보장하는 이동성 관리 방법을 제안한다. 더욱 자세히는, 끊김 없는 인터넷 서비스를 제공하기 위한 사용자 정의 네트워크의 모델, 구조 및 알고리즘을 제시한다. 마지막으로, 네트워크 시뮬레이터 2 (Network Simulator Tool 2)를 이용하여 제안된 알고리즘에 대한 성능 분석을 하였다.

온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인에 대한 연구 (An Empirical Study on Influencing Factors of Switching Intention from Online Shopping to Webrooming)

  • 최현승;양성병
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.19-41
    • /
    • 2016
  • 정보통신기술의 발전과 모바일 기기 사용의 생활화로 인해 최근 많은 소비자들이 멀티채널 쇼핑(multi-channel shopping)이라는 새로운 쇼핑 행태를 보이고 있다. 온라인 쇼핑이 등장한 이후, 온라인 매장에서 상품을 구매하기 전 오프라인 매장에서 상품을 먼저 확인하는 쇼루밍(showrooming) 형태의 멀티채널 쇼핑이 한 때 대세를 이루었으나, 최근에는 스마트폰, 태블릿 PC, 스마트워치 등 스마트 기기 사용의 폭발적 증가와 옴니채널(omni-channel) 전략으로 대표되는 오프라인 채널의 대대적 반격으로 인해 오프라인 매장에서 상품을 구매하기 전 온라인(혹은 모바일)으로 정보를 먼저 확인하는 웹루밍(webrooming) 현상이 도드라지게 나타나 온라인 소매업자를 위협하고 있다. 이러한 상황에서 소비자의 온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인을 분석하는 것이 의미가 있음에도 불구하고, 기존 대부분의 선행연구는 싱글채널(single-channel) 혹은 멀티채널 쇼핑 자체에만 초점을 맞추고 있다. 이에, 본 연구에서는 밀고-당기기-이주이론(push-pull-mooring theory)을 바탕으로 소비자의 온라인 채널 쇼핑이 웹루밍 형태의 쇼핑으로 전환되는 과정을 상품정보 탐색과 구매행위로 각각 구분하여 그 영향을 실증하였다. 연구모형을 검증하기 위하여, 웹루밍 경험이 있는 수도권 소재 대학생을 대상으로 280개의 설문 표본을 수집하였다. 본 연구의 결과는 현업 마케팅 종사자에게 멀티채널 소비자들을 관리하는 데 있어 실무적인 시사점을 제공함과 동시에, 향후 다양한 형태의 멀티채널 쇼핑전환 연구로의 확장에 기여할 수 있을 것으로 기대한다.