• Title/Summary/Keyword: mixture-proportioning procedure

Search Result 3, Processing Time 0.014 seconds

Mixture-Proportioning Model for Low-CO2 Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials (혼화재 종류 및 치환율을 고려한 저탄소 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • The objective of this study is to establish an rational mixture-proportioning procedure for low-$CO_2$ concrete using supplementary cementitious materials (SCMs) achieving the targeted $CO_2$ reduction ratio as well as the conventional requirements such as initial slump, air content, and 28-day compressive strength of concrete. To evaluate the effect of SCM level on the $CO_2$ emission and compressive strength of concrete, a total of 12537 data sets were compiled from the available literature and ready-mixed concrete plants. The amount of $CO_2$ emission of concrete was assessed under the system boundary from cradle to concrete production stage at a ready-mixed concrete plant. Based on regression analysis using the established database, simple equations were proposed to determine the mixture proportions of concrete such as the type and level of SCMs, water-to-binder ratio, and fine aggregate-to-total aggregate ratio. Furthermore, the $CO_2$ emissions for a given concrete mixture can be straightforwardly calculated using the proposed equations. Overall, the developed mixture-proportioning procedure is practically useful for determining the initial mixture proportions of low-$CO_2$ concrete in the ready-mixed concrete field.

Mix Design of Lightweight Aggregate Concrete and Determination of Targeted Dry Density of Concrete (경량골재 콘크리트의 배합설계 및 목표 콘크리트 기건밀도의 결정)

  • Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.491-497
    • /
    • 2013
  • The objective of the present study is to establish a straightforward mixture proportioning procedure for structural lightweight aggregate concrete (LWAC), and evaluate the selection range of the targeted dry density of concrete against the designed concrete compressive strength. In developing this procedure, mathematical models were formulated based on a nonlinear regression analysis over 347 data sets and two boundary conditions of the absolute volume and dry density of concrete. The proposed procedure demonstrated the appropriate water-to-cement ratio and dry density of concrete to achieve the designed strength decrease with the increase in volumetric ratio of coarse aggregates. This trend was more significant in all-LWAC than in sand-LWAC. Overall, the selection range of the dry density of LWAC exists within a certain range according to the designed strength, which can be obtained using the proposed procedure.