• Title/Summary/Keyword: mixture theory

Search Result 306, Processing Time 0.025 seconds

Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells

  • R. Bina;M. Soltani Tehrani;A. Ahmadi;A. Ghanim Taki;R. Akbarian
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.487-499
    • /
    • 2024
  • The primary objective of this study is to analyze the free vibration behavior of a sandwich cylindrical shell with a defective core and wavy carbon nanotube (CNT)-enhanced face sheets, utilizing the three-dimensional theory of elasticity. The intricate equations of motion for the structure are solved semi-analytically using the generalized differential quadrature method. The shell structure consists of a damaged isotropic core and two external face sheets. The distributions of CNTs are either functionally graded (FG) or uniform across the thickness, with their mechanical properties determined through an extended rule of mixture. In this research, the conventional theory regarding the mechanical effectiveness of a matrix embedding finite-length fibers has been enhanced by introducing tube-to-tube random contact. This enhancement explicitly addresses the progressive reduction in the tubes' effective aspect ratio as the filler content increases. The study investigates the influence of a damaged matrix, CNT distribution, volume fraction, aspect ratio, and waviness on the free vibration characteristics of the sandwich cylindrical shell with wavy CNT-reinforced face sheets. Unlike two-dimensional theories such as classical and the first shear deformation plate theories, this inquiry is grounded in the three-dimensional theory of elasticity, which comprehensively accounts for transverse normal deformations.

Mix Design of High Performance Concrete Using Maximum Density Theory (최대 밀도 이론을 이용한 고성능콘크리트의 배합 설계)

  • Lee, Seung-Han;Jung, Yong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In recent years the field application of high performance concrete has been increased to improve the quality and reliability of concrete structures. The mix design of the high performance concrete includes the 2 set-off mixture theory of mortar and coarse aggregate and that of paste and aggregate. The 2 set-off mixture theory of mortar and coarse aggregate has a problem of having to determine its value through repeated experiments in applying the rheological characteristics of mortar. The 2 set-off mixture theory of paste and aggregate has never been applied to high performance concrete since it doesn't take into account the relationship between optimum fine aggregate ratio and unit volume of powder nor does it consider the critical aggregate volume ratio. As the mixture theory of these high performance concretes, unlike that of general concrete, focuses on flowability and charge-ability, it does not consider intensity features in mix design also, the unit quantity of the materials used is determined by trial and error method in the same way as general concrete. This study is designed to reduce the frequency of trial and error by accurately calculating the optimum fine aggregate ratio, which makes it possible to minimize the aperture of aggregate in use by introducing the maximum density theory to the mix design of high performance concrete. Also, it is intended to propose a simple and reasonable mix design for high performance concrete meeting the requirements for both intensity and flowability. The mix design proposed in this study may reduce trial and error and conveniently produce high performance concrete which has self-chargeability by using more than the minimum unit volume of powder and optimum fine aggregate with minimum porosity.

Bootstrap Confidence Intervals of Ridge Estimators in Mixture Experiments (혼합물실험에서 능형추정량에 대한 붓스트랩 신뢰구간)

  • Jang, Dae-Heung
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.62-65
    • /
    • 2006
  • We can use the ridge regression as a means for stabilizing the coefficient estimators in the fitted model when performing experiments in highly constrained regions causes collinearity problems in mixture experiments. But there is no theory available on which to base statistical inference of ridge estimators. The bootstrap could be used to seek the confidence intervals of ridge estimators.

Segmentation of the Compensation Packages for Doctors by Mixture Regression Model (혼합회귀모델을 이용한 의사의 선호보상체계 분석)

  • Paik, Soo-Kyung;Kwak, Young-Sik
    • Korea Journal of Hospital Management
    • /
    • v.10 no.4
    • /
    • pp.75-97
    • /
    • 2005
  • The research objective is to empirically investigate the compensation packages maximizing the utilities of internal customers by applying the market segmentation theory. Data was collected from four Korean hospitals in Seoul, Busan and Gyunggi-do. The research is designed to seek the compensation package maximizing the utility of doctors by mixture regression model, which has been applied as latent structure and other type of finite mixture models from various academic fields since early 1980s. The mixture regression model shows the optimal segments number and fuzzy classification for each observation by EM(expectation-maximization algorism). The finite mixture regression model is to unmix the sample, to identify the groups, and to estimate the parameters of the density function underlying the observed data within each group. The doctors were segmented into 5 groups by their preference for the compensation package. The results of this study imply that the utility of doctors increases with differentiated compensation package segmented by their preference.

  • PDF

Measurement of solubility and miscibility of R-134a/PAG oil mixture (R-134a/PAG 오일 혼합물의 용해도 및 상용성 측정)

  • 김창년;송준석;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.518-527
    • /
    • 1999
  • The solubility and miscibility measurement apparatus has been developed and used to obtain data for refrigerant/oil mixture. The solubility and miscibility data for R-134a/46 ISO VG Polyalkylen Glycol(PAG) oil mixture are obtained over the temperature range from -20 to 6$0^{\circ}C$ with a 1$0^{\circ}C$ interval and the oil concentration range from 0 to 90wt%. Using the experimental data, an empirical model is developed to predict the solubility relations for R-134a/PAG oil mixture at equilibrium. The average root-mean-square deviation between measured data and calculated results from the empirical model is 4.2%. Raoult's rule and Flory-Noggins theory are also used to predict mixture behavior. Immiscibility is observed for R-134a/46 ISO VG PAG oil mixture at low oil concentrations of 4.6, 10.1, and 20.4wt%.

  • PDF

An Analysis of Features in Self Generated Analogies during Phaseal Teaching Learning Process about Mixture Using Analogy for Lower Elementary School Students (초등학교 저학년 학생들의 단계적 비유추론 학습과정을 통한 혼합물 학습 과정에서 제시된 생성적 비유의 특징 분석)

  • Jung, Jin Kyu;Kim, Youngmin
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.4
    • /
    • pp.419-433
    • /
    • 2015
  • Analogical reasoning is a central component of human cognition and contributes to scientific discovery and to develop science education. In this study, we investigated the process features of lower elementary school students' analogical reasoning to explain mixture concept. The subjects are 24 lower elementary students. And the research design includes three phases instruction to investigate the features of students' self generated analogy. Phase 1 is the introduction of analogy in which student learn to use analogy. Phase 2 is a POE class about mixture conception. Piaget and Inhelder studied the conception of mixing among children in relation to cognitive development. In phase 2, we taught the student with Piaget and Inhelder's the experiment and observed the features of learning process about mixture conception. Phase 3 is students' generation of analogy (self generated analogy) for the experienced phenomena in phase 2. We analyzed the students' responses through the three phases in the view of Gentner's Structure Mapping Theory. The results showed that many lower elementary school students even before formal operation stage understood the mixture conception and made well their self generated analogy to explain the mixture conception in spite of the difficulty of making self generated analogy.

Natural Convection During Directional Solidification of a Binary Mixture (이성분 혼합액의 방향성 응고에서 자연 대류)

  • Hwang, In Gook;Choi, Chang Kyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.174-178
    • /
    • 2009
  • A mushy layer of dendritic crystals is often formed during solidification of a binary mixture. Natural convection in the mushy layer is analyzed by using the propagation theory we have developed. The critical Rayleigh numbers for the onset of convection are evaluated numerically using the self-similar stability equations based on Emms and Fowler's model. The present results approach those from quasi-static stability analysis in the limit of a large superheat or a small growth rate of the mushy layer.

Analysis of Post-tensioned Slab Bridge by Means of Specially Orthotropic Theory (특별직교이방성 이론에 의한 포스트텐션 슬래브교의 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.13-17
    • /
    • 2010
  • A post-tensioned slab bridge is analyzed by the specially orthotropic theory. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis. The result of this paper can be used for post-tensioned slab bridge analysis by the engineers with undergraduate study in near future.

  • PDF

A refined exponential shear deformation theory for free vibration of FGM beam with porosities

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E. Adda
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.361-372
    • /
    • 2015
  • In this paper, a refined exponential shear deformation theory for free vibration analysis of functionally graded beam with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.