• Title/Summary/Keyword: mixture process

Search Result 2,048, Processing Time 0.024 seconds

Hydrogen Separation from Multi-Component Mixture Gases by Pressure Swing Adsorption Process (PSA 공정을 이용한 다성분 혼합가스의 수소 분리)

  • Yang, Se-Il;Ahn, Eui-Sub;Jang, Seong-Cheol;Choi, Do-Young;Choi, Dae-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.447-450
    • /
    • 2006
  • Hydrogen separation from multi-component mixture gases by the four-bed PSA process was studied experimentally and theoretically using layered bed of activated carbon and zeolited 5A. Effects of the adsorption time, the linear velocity on the process performance were investigated. The adsorption time and linear velocity affected the purity and recovery of the product $H_2$ purity is increases according as the adsorption time and linear velocity decrease; however, $H_2$ recovery shows an opposite phenomena to the purity. PSA process simulation studied to find optimum operation condition. In the results, 50sec adsorption time, 3cm/s linear velocity might be optimal values to obtain more than 99.999% purity and 65% recovery hydrogen.

  • PDF

Numerical Study on the Effect of Injection Direction on Mixture Formation Characteristics in DISI Gasoline Engine (가솔린 직분사식 불꽃점화기관에서 연료 분사 방향이 혼합기 형성에 미치는 영향에 관한 수치적 연구)

  • Kim, Taehoon;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.101-102
    • /
    • 2014
  • Rising oil price and environmental problems are causing automotive industry to increase fuel efficiency. Improved fuel efficiency in gasoline engine was made possible by development of DISI gasoline engine. Since fuel is injected inside cylinder directly, in-cylinder temperature can be reduced than multi-port injection engine and this leads to increased compression ratio. However, engine performance is largely dependent on mixture formation process due to in-cylinder fuel injection. Especially for spray guided and air guided DISI gasoline engine, injection direction is important factor to mixture preparation. It is because interaction between intake flow and spray affect fuel-air mixture. Hence, in this study, mixture formation characteristics were analyzed by varying injection direction using KIVA 3V release2 code. Residual gas was considered for assuming combustion. Therefore, initial condition for in-cylinder temperature was set equal to the end state of exhaust stroke of combustion cycle. Since angle between intake air flow direction and spray direction affects fluid flow and evaporation field, mixture distribution was affected by fuel injection direction dominantly.

  • PDF

A Study on the Macro-Scopic Spray Characteristic of Homogeneous Degree for the GDI Injector According to Mixture(Gasoline-Diesel) Ratio Using Mie-Scattering Method and the Entropy Analysis (Mie 산란 방법과 엔트로피 해석 방법을 이용한 혼합연료비에 따른 분무 균질도 특성에 관한 연구)

  • Lee, Chang-Hee;Lee, Ki-Hyung;Lee, Chang-Sik;;Bae, Jae-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2003
  • In this study, his technique was applied to a GDI spray in order to investigate the mixture distribution. In addition, the homogeneity degree and diffusion effect according to ambient temperature in the high pressure chamber were analyzed by using an entropy analysis method. From this experiment, we could find that entropy analysis is very effective method for the analysis of mixture formation, and the entropy values increase with the progress of uniformity in diffusion Process. we tried to provide the fundamental data for parameter which effects on the spray macroscopic characteristics with mixture ratio of diesel and gasoline. In addition, the mixture formation was analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. From the entropy analysis results we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions. As to increasing ambient temperature and increasing gasoline rate, the entropy intensity using the statistic thermodynamics method is increased because evaporation rate is higher gasoline than diesel.

Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode

  • Xingchen Lu;Dahai Jing;Defu Jiang;Ming Liu;Yiyue Gao;Chenyong Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1635-1656
    • /
    • 2023
  • In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a state-of-the-art filter based on the methodology of random finite set which is a conjugate prior composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian filtering framework and derive a tractable and principled method, namely: the time-matching Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS filters based on time-matching method with different birth models under directional continuous scanning and out-of-order discontinuous scanning. The results of simulation demonstrate that the proposed filter not only can effectively reduce the influence of sampling time diversity, but also improve the estimated accuracy of target state along with cardinality.

Study on the Performance of a Spark Ignition Gas Engine for Power Generation fueled by the Methane/Syngas Mixture (메탄/합성가스 혼합물에 의한 발전용 SI 가스엔진의 성능에 관한 연구)

  • Cha, Hyoseok;Hur, Kwang Beom;Song, Soonho
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.7-12
    • /
    • 2015
  • Hydrogen is usually produced by using syngas generated by the fuel reforming for natural gas so far. The further process is needed for increasing the hydrogen yield of syngas. However, the process for upgrading the hydrogen yield is accompanied by additional energy sources and economic costs. Thus related studies on the method for using as a mixture in itself have been conducted in order to utilize more efficiently syngas. The effect on the engine performance for methane/syngas mixture of 30kW spark ignition gas engine for power generation has been investigated in this study. As a result, it was found that the combustion phenomena such as the maximum in-cylinder pressure and crank angle at that time have been improved by methane/syngas mixture. Through these, fuel conversion efficiency could be enhanced by about 98% of methane/hydrogen mixture and $NO_x$ emissions could be reduced by about 12% of methane-hydrogen mixture.

Synthesis of Isopropyldichlorosilane by Direct Process

  • Lim, Weon-Cheol;Cho, Joo-Hyun;Han, Joon-Soo;Yoo, Bok-Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1661-1664
    • /
    • 2007
  • Direct reaction of elemental silicon with a gaseous mixture of isopropyl chloride (1) and hydrogen chloride in the presence of copper catalyst using a stirred bed reactor equipped with a spiral band agitator gave isopropyldichlorosilane having a Si-H bond (2a) as a major product and isopropyltrichlorosilane (2b) along with chlorosilanes, trichlorosilane and tetrachlorosilane. A process for production of 2a was maximized using the 1:0.5 mole ratio of 1 to HCl and smaller size of elemental silicon at a reaction temperature of 220 °C. When a reaction was carried out by feeding a gaseous mixture of 1 [12.9 g/h (0.164 mol/h)] and HCl [2.98 g/h (0.082 mol/h)] to a contact mixture of elemental silicon (360 g) and copper (40 g) under the optimum condition for 45 h, 2a among volatile products kept up about 82 mol % until 35 h and then slowly decreased down 68 mol % in 45 h reaction. Finally 2a was obtained in 38% isolated yield (based on 1 used) with an 85% consumption of elemental silicon in a 45 h reaction. In addition to 2a, 2b was obtained as minor product along with chlorosilanes, trichlorosilane, and tetrachlorosilane. The decomposition of 1 was suppressed and the production of 2a improved by adding HCl to 1.

Effects of Oxidant Addition to Fuel on Soot Formation of Laminar Diffusion Flames (동축류 확산화염의 매연생성에 미치는 연료에 첨가된 산화제의 영향)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • The influence of oxidant addition on soot formation is investigated experimentally with ethylene, propane and mixture fuel co-flow diffusion flames. Oxidant addition into fuel shows the increase of integrated soot volume fractions for ethylene, ethylene/ethane and ethylene/methane mixture flames. However, the increase of integrated soot volume fraction with oxidant addition was not significant for propane and ethylene/propane mixture flames. This discrepancy is explained with $C_2\;and\;C_3$ chemistry at the early stage of soot formation process. The oxidant addition increases the concentration of $C_3H_3$ in the soot formation region, and therefore, enhances soot formation process. A new soot formation rate model that includes both dilution effect and chemical effect of oxygen is suggested to interpret the increase of integrated soot volume fractions with oxidant addition into ethylene. Also, the role of adiabatic flame temperature for the chemical effect of oxygen addition into fuel was reviewed. The influence of oxidant or diluent addition into fuel on soot formation process are the fuel dilution effect, the adiabatic flame temperature altering effect and/or the chemical effect of oxygen. Their relative importance could change with fuel structure and adiabatic flame temperature.

  • PDF

Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture (액상-고체입자 혼합물의 응고 시 응고계면에서의 입자의 거동)

  • Lee, Ho-Suk;Lee, Kyu-Hee;Oh, Sung-Tag;Kim, Young Do;Suk, Myung-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.336-339
    • /
    • 2018
  • A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphor-naphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

A nonparametric Bayesian seemingly unrelated regression model (비모수 베이지안 겉보기 무관 회귀모형)

  • Jo, Seongil;Seok, Inhae;Choi, Taeryon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.627-641
    • /
    • 2016
  • In this paper, we consider a seemingly unrelated regression (SUR) model and propose a nonparametric Bayesian approach to SUR with a Dirichlet process mixture of normals for modeling an unknown error distribution. Posterior distributions are derived based on the proposed model, and the posterior inference is performed via Markov chain Monte Carlo methods based on the collapsed Gibbs sampler of a Dirichlet process mixture model. We present a simulation study to assess the performance of the model. We also apply the model to precipitation data over South Korea.

A Continuous Cell Separation Chip Using Hydrodynamic Dielectrophoresis Process (유체동역학적 유전영동법을 이용한 극소형 연속 세포분리기)

  • Doh Il;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.53-58
    • /
    • 2005
  • We present a high-throughput continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. The continuous cell separation chip uses three planar electrodes in a separation channel, where the positive DEP cells are moved away from the central streamline while the negative DEP cells remain in the central streamline. In the experimental study, we use the mixture of viable (live) and nonviable (dead) yeast cells in order to obtain the continuous cell separation conditions. For the conditions of the electric fields frequency of 5MHz and the medium conductivity of $5{\mu}S/cm$, the fabricated chip performs a continuous separation of the yeast cell mixture at the varying flow-rate in the range of $0.1{\sim}{\mu{\ell}/min$.; thereby, resulting in the purity ranges of $95.9{\sim}97.3\%\;and\;64.5{\sim}74.3\%$ respectively for the viable and nonviable yeast cells. present chip demonstrates the constant cell separation performance for varying mixture flow-rates.