• Title/Summary/Keyword: mixture of two Poisson

Search Result 13, Processing Time 0.018 seconds

Impact of Heterogeneous Dispersion Parameter on the Expected Crash Frequency (이질적 과분산계수가 기대 교통사고건수 추정에 미치는 영향)

  • Shin, Kangwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5585-5593
    • /
    • 2014
  • This study tested the hypothesis that the significance of the heterogeneous dispersion parameter in safety performance function (SPF) used to estimate the expected crashes is affected by the endogenous heterogeneous prior distributions, and analyzed the impacts of the mis-specified dispersion parameter on the evaluation results for traffic safety countermeasures. In particular, this study simulated the Poisson means based on the heterogeneous dispersion parameters and estimated the SPFs using both the negative binomial (NB) model and the heterogeneous negative binomial (HNB) model for analyzing the impacts of the model mis-specification on the mean and dispersion functions in SPF. In addition, this study analyzed the characteristics of errors in the crash reduction factors (CRFs) obtained when the two models are used to estimate the posterior means and variances, which are essentially estimated through the estimated hyper-parameters in the heterogeneous prior distributions. The simulation study results showed that a mis-estimation on the heterogeneous dispersion parameters through the NB model does not affect the coefficient of the mean functions, but the variances of the prior distribution are seriously mis-estimated when the NB model is used to develop SPFs without considering the heterogeneity in dispersion. Consequently, when the NB model is used erroneously to estimate the prior distributions with heterogeneous dispersion parameters, the mis-estimated posterior mean can produce large errors in CRFs up to 120%.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

Comparative Study on the Estimation Methods of Traffic Crashes: Empirical Bayes Estimate vs. Observed Crash (교통사고 추정방법 비교 연구: 경험적 베이즈 추정치 vs. 관측교통사고건수)

  • Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.453-459
    • /
    • 2010
  • In the study of traffic safety, it is utmost important to obtain more reliable estimates of the expected crashes for a site (or a segment). The observed crashes have been mainly used as the estimate of the expected crashes in Korea, while the empirical Bayes (EB) estimates based on the Poisson-gamma mixture model have been used in the USA and several European countries. Although numerous studies have used the EB method for estimating the expected crashes and/or the effectiveness of the safety countermeasures, no past studies examine the difference in the estimation errors between the two estimates. Thus, this study compares the estimation errors of the two estimates using a Monte Carlo simulation study. By analyzing the crash dataset at 3,000,000 simulated sites, this study reveals that the estimation errors of the EB estimates are always less than those of the observed crashes. Hence, it is imperative to incorporate the EB method into the traffic safety research guideline in Korea. However, the results show that the differences in the estimation errors between the two estimates decrease as the uncertainty of the prior distribution increases. Consequently, it is recommended that the EB method be used with reliable hyper-parameter estimates after conducting a comprehensive examination on the estimated negative binomial model.