• Title/Summary/Keyword: mixture fabric

Search Result 105, Processing Time 0.019 seconds

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

A Study on the Preparation of Solvent-Free Low Foaming Scouring Agents (무용제형 저기포성 정련제의 제조에 관한 연구)

  • Keun, Jang-Hyoun;Kim, Seung-Jin;Hahm, Hyun-Sik;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.760-769
    • /
    • 1993
  • Solvent-free low foaming scouring agents(LFSA) were prepared by blending of polyoxyethylene(30) octadecylbenzylammonium chloride(POAC), block copolymer of propylene oxide-ethylene oxide[p(PO-b-EO) glycol], Sedlan FF-200(FF-200) and sulfonic acid-amine condensate of polyoxyethylene(10) nonylphenyl ether(PSAC). In consequence of several tests, FF-200/POAC/p(PO-b-EO) glycol/PSAC/water (20g/10g/5g/5g/60g) mixture (LFSA-5) showed good cleaning power, penetrating ability, emulsifiability and stability to alkali, and gave less problem in water pollution. Scouring effect of LFSA-5 was investigated by the change of percentage of exhaustion before and after scouring at various dyeing temperatures. The percentage of exhaustion of the unscoured PET fabric was 4.5% at $70^{\circ}C$, while that scoured with LFSA-5 was 1.3% at the same temperature, which proved LFSA-5 to be a good scouring agent. Moreover, the foaming power of LFSA-5 measured by Ross and Miles method was 6mm foam height immediately after foaming, and that measured by Ross and Clark method was less than 300mm foam height at $30^{\circ}C$, and 20mm at $80^{\circ}C$. As a result, LFSA-5 proved a good low foaming scouring agent.

  • PDF

The Cleaning of Costumes of Yeosan Song's Family Excavated at Mokdal-dong in Daejeon (대전 목달동 출토 여산송씨 출토복식의 세척)

  • Baek, Young-Mee;Kwon, Young-Suk
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • The purpose of this study is to provide basic information necessary for the cleaning of excavated costumes. For the purpose, these researchers reviewed previous records of the actual cleaning of excavated costumes and then implemented and documented the processes of cleaning the Yeosan Song's costumes excavated at Mokdal-dong, Daejeon, which could date back to the early and mid periods of Choseon Dynasty. The excavated clothes of the family provide good examples for comparing men's costume of the 15th century with men's and women's of the mid and late 16th century. The total quantity of excavated remains were 184 and textiles were cotton, silk, hemp, ramie, and union cloth. The clothing remains were processed through wet or dry cleaning in accordance with their fabric condition and the extent to which they were worn or polluted. In detail, the excavated costumes of the Yeosan Song family were cleaned in two stages. For wet cleaning, both anionic(LAS) and nonionic(Triton X-100) surfactants were respectively used as cleaning agents and for dry cleaning, a mixture of n-hexane and n-decane(the ratio of 4 to 6) and petrolic dry cleaning solvent were used. After first cleaning, some cotton, ramie and hemp which had still the stains were processed bleaching and silk which were good condition was processed dry cleaning with the organic solvent again.

  • PDF

Performance Style of the Emperor Gojong' Birth Anniversary Memorial Banquet in the 1910s (1910년대 고종 탄신 기념 연회의 공연 양상)

  • Lee, Jung-hee
    • (The) Research of the performance art and culture
    • /
    • no.35
    • /
    • pp.287-338
    • /
    • 2017
  • Gojong' Birth Anniversary Memorial Banquet in the 1910s was forced to be performed differently from the performance style in Joseon Dynasty period that featured a harmonious majestic beauty of etiquette music. The banquet was separated into three different sessions of ceremony, luncheon and performance', which clearly revealed a distinctive pattern of etiquette music. The performance was accompanied by the dinner party or was lightly implemented as part of evening entertainment. With the use of the term entertainment, the performances belonging to this category fell into nothing but something to enjoy, amusement, fun and play. The contents of such performances were not closely woven into the fabric of the entire banquet but were individualized and scattered in a way of putting the performances in a state of flux in line with the circumstances. Therefore, it became increasingly hard to expect a high degree of completion and solid structure of performances. The items of performance included western music, popular vocal music, popular instrumental music, magic, and film, which were not played in traditional court banquet in the presence of Gojong rather than traditional music and dance performed in court. In other words, the court performance could not maintain its traditional heritage but was transformed into a mixture of popular performance and new forms of art. It was driven by the Japanese imperialism toward the atmosphere of entertainment in oblivion of tradition but not toward the external extension of court performances.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF