• Title/Summary/Keyword: mixing water

Search Result 2,417, Processing Time 0.027 seconds

Compressive Strength and Optimal Mixing Ratio of Alkali Activated Cement Concrete Containing Fly Ash (플라이 애쉬를 활용한 알칼리 활성시멘트 콘크리트의 압축강도와 최적혼합비)

  • Han, Sang-Ho;Park, Sang-Sook;Kang, Hwa-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.152-158
    • /
    • 2007
  • This is a fundamental research to utilize alkali activated cement(AAC) in concrete. The compressive strength of AAC concrete were measured for the various mixing ratios of activator/fly ash, and the mixing ratios of water glass, NaOH, and water among the activators. The mixing ratio of fine and coarse aggregates was maintained constantly. The relationships between the compressive strength and mixing ratios were analyzed to find the optimal mixing ratio of AAC concrete. As the results, the optimal mixing ratio of activator/fly ash in AAC concrete was 0.7, and that of water glass, NaOH, water among the activator was 4.0:1.0:2.5 for the maximum compressive strength.

Effect of S.E.C Mixing on the Properties of Concrete (S.E.C 방식에 의한 콘크리트의 혼합효과에 관한 연구)

  • 김기형;박원태;최재진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.133-139
    • /
    • 1997
  • Conventional concrete mixing method is to put all of the materials simultaneously into a mixer and mix for a required time. However, recently concrete researchers have reported that mixing sequence iufluences the properties of concrete. This study discusses the influence of mixing sequence and partitioning addition of mixing water. Concrete, by method of partitioning addition of mixing water, was found to have substantially stronger strength than conventional concrete with the same water-cement ratio. This means that a higher strength concrete could be obtained by using “Sand Enveloped with Cement”(S.E.C) mixing technique. Both a high bond strength between cement paste and aggregate, and elimination of bleeding both contribute to improving the strength of S. E. C concrete.

  • PDF

Numerical Analysis of Mixing Flow in a Small-Scale Water Supply System (간이상수도에서의 혼합유동에 대한 수치해석)

  • Yoo, Young-Hyun;Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho;Kim, Yong-Seon;Lee, Yong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.460-466
    • /
    • 2009
  • The mixing method of water and chemicals is significant in a small-scale water supply system because drinking water should be supplied with a certain quantity of remaining chemicals maintained. In the present study, the concentration distribution and the mixing index were obtained from four models, which were to find out the optimal mixing method of water and chemicals. The two models brought the good mixing effects out of the four, one for providing chemicals from the center of water supply pipe and the other for setting up the semicircle block at the downstream of the chemicals-providing pipe. As a result, the mixing effect was found out to be increased due to the diffusion and the disturbance of flows. In conclusion, these numerical results are expected to contribute to designing the optimal mixing system.

Two-Fluid Mixing in a Microchannel (마이크로 채널에서 두 유체 혼합)

  • LIU Ying Zheng;KIM Byoung Jae;SUNG Hyung Jin
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.16-23
    • /
    • 2003
  • A numerical study of the mixing of two fluids(pure water and a solution of glycerol in water) in a microchannel was carried out. By varying the glycerol content of the glycerol/water solution, the variation in mixing behavior with changes in the difference of the properties of the two fluids(e.g., viscosity, density, diffusivity) was investigated. The mixing phenomena were tested for three micromixers: a square mixer, a three-dimensional serpentine mixer, and a staggered herringbone mixer. The governing equations of continuity, momentum and solute mass fraction were solved numerically. To evaluate mixing performance, a criterion index of mixing of mixing uniformity was proposed. In the systems considered, the Reynolds numbers based on averaged properties were 1 and 10. For low Reynolds number (Re = 1), the mixing performance varied inversely with mass fraction of glycerol due to the dominance of molecular diffusion. The mixing performance by diffusion deteriorated due to a significant reduction in the residence time of the fluid inside the mixers.

Evaluation of Pressurized Water Diffusion in Water Treatment Process Using CFD (전산유체역학(CFD)를 활용한 정수공정에서 압력수 확산공정 진단)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Bin, Jae-Hoon;Choe, Kwang-Ju;Lee, Kwang-Ug;Lee, Gi-Bong;Lee, Jeong-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.359-367
    • /
    • 2011
  • The Process of Pressurized water diffusion is mixing process by pressurized water injection with coagulate and chlorine water in the water treatment system. The objectives of this research were to evaluate the mixing length and diameter of diffusion plate and distance from injection pipe for complete mixing by using computational fluid dynamics. From the results of CFD simulation, when diameter of injection pipe is 50 mm, 100 mm and injection pressure is $5kg/cm^2$ and the diameter of inlet pipe is 2,200 mm, the complete mixing length is 4D (D: Length as diameter of inlet pipe). When diameter of injection pipe is 50 mm, the diameter of the diffusion plate in o.1D and distance from injection pipe is 0.2D, the complete mixing length is 3D that is the most short mixing length. But when diameter of injection pipe is 100 mm and mutually related the diameter, distance of diffusion plate, the complete mixing length is 4D over. Therefore, as the diameter of inlet pipe is 2,200 mm, the injection pipe 50 mm is more efficient than 100 mm.

Effect of Water Content Change of Soft Clay on Strength of Solidification Agent Treated Soil (연약점토의 함수비 변화가 고화처리토의 강도에 미치는 영향)

  • 김광빈;이용안;이광준;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.553-560
    • /
    • 2002
  • The improvement effect of soft ground is estimated by unconfined strength mainly. The unconfined strength of solidification agent treated soil is likely to vary with ununiformed mixing ratio and water content change of in-situ ground place by place. So, it is unreasonable to apply a solidification agent mixing ratio obtained from laboratory test results on all over the soft ground. In this study, it was analysed how the unconfined strength would be effected by the water content of soft ground. For this study, a series of unconfined compressive tests are peformed on various water content soil samples. The test results showed that the strength was fallen to 30∼80% by two times increase of water content approximately, This means that strength of solidification agent treated soil is influenced greatly by water content of raw soft ground and mixing ratio of solidification agent. It was suggested that the method how to decide the mixing ratio with soft ground water content.

  • PDF

Mixing Zone Analysis on Outfall Plume considering Influent Temperature Variation (수온 변화의 영향을 고려한 방류관 플룸의 혼합역 분석)

  • 김지연;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.247-253
    • /
    • 2004
  • As a large scale port development in coastal waters proceeds step by step and populations in the vicinity of port are getting increased, the issue on "how to dispose the treated municipal water and wastewater in harbor" brings peoples′ concern. The submarine outfall system discharges the primary or secondary treated effluent at the coastline or in deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding sea water and becomes very dilute. We intended in this paper to investigate the impact on dilution of effluent and the behavior of flume under the conditions of the seasonal and spatial temperature variations, which have not been noticeable in designing effective marine outfall system. To predict and analyze the behaviour and dilution characteristics of plume not just with the effluent temperature, but also with the seasonal variation of temperature of surround water and tidal changes, CORMIX(Cornell Mixing Zone Expert System)-GI have been applied. The results should be used with caution in evaluation the mixing zone characteristics of discharged water. We hope to help for the effective operation of outfall system, probable outfall design, protection of water quality, and warm water discharges from a power plant, etc.

  • PDF

A Statistical Assessment of Increasing Tidal Mixing Effects on Water Quality in the Shiwha Coastal Reservoir (시화호 해수유통량 증대에 따른 통계학적 수질 영향 분석)

  • Lee, Bum-Yeon;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.425-432
    • /
    • 2021
  • A tidal power plant (TPP) has been in operation since the end of 2011 to improve the water quality of Shihwa Coastal Reservoir (SCR). Tidal mixing rate increased 5.6 times after the TPP operation so that in this study, its effects on water quality was assessed through statistical analysis of long-term water quality monitoring data. It was found that the increased tidal mixing contributed to solving the hypoxia problem in the bottom water by preventing the summer stratification. The analysis also showed that the increased tidal mixing had different effects depending on the relative concentration difference for each water quality substances between the SCR and the outside of SCR. The average concentrations of some substances (chemical oxygen demand, total phosphorus, chlorophyll-a) with higher concentrations than the outside of SCR decreased due to the dilution effect, but the other substances (total nitrogen, dissolved inorganic nitrogen, dissolved inorganic phosphorus) with lower concentrations compared to the outside ones increased on the contrary. Factor analysis also showed a consistent result that the first factor accounting for the water quality was changed from the organic-related substances to the nutrient-related substances after the increased tidal mixing. These results imply that the focus of future water quality management needs shifting from the organic substances to the nutrients, particularly dissolved inorganic nutrients. Considering the effect of inflow seawater on the nutrients, the management area should be extended to cover not only SCR but also a certain area outside of SCR.

A Study on the Variation of Physical Properties by the Water to Cement Ratio and the Mixing Speed for Grout Materials (그라우트재의 물시멘트비 및 혼합속도에 의한 물성변화에 관한 연구)

  • 천병식;김진춘;장의웅;송성호;이준우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.445-452
    • /
    • 2001
  • Generally, OPC(ordinary portland cement) is used for grouting in Korea, and bentonite has usually been added to prevent the deposition of cement particles. The dispersion of CB(cement bentonite) grout is influenced by variable factors i.e. water to cement ratio, particle size of cement, kind of bentonite, adding volume, methods of adding, viscosity of CB grout materials and curdling time. Among variable factors, the viscosity of CB grout materials is influenced by the dispersion, and dispersion is improved as increasing the mixing speed. In this paper, described a suitable mixing speed of the High Speed Mixer in field, engineering characteristics of CB grout materials vary with the water to cement ratio and the mixing speed as well as confirming the state of dispersion.

  • PDF

Experimental Study on the Optimum Operation Conditions of Rapid Mixing Impellers for an Effective W.T.P. Design (정수장 효율 향상을 위한 혼화기별 최적 운전조건 산정에 관한 실험적 연구)

  • Son, Gwang-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.731-741
    • /
    • 1997
  • Optimum design conditions of rapid mixing impellers for an effective Water Treatment Plant operation were experimentally studied by thorough examination of parameters, such as impeller type and detention time. which govern the removal efficiency of turbidity. It was found that the impeller type is one of the major parameters governing the economic power consumption and the efficiency of turbidity removal. The experimental results showed that not only the velocity gradient G but also a new design guide. so called mixing energy per unit volume of raw water, could be used as a design and operation guides for rapid mixing in W.T.P.

  • PDF