• Title/Summary/Keyword: mixing volume

Search Result 719, Processing Time 0.027 seconds

Physicochemical Qualities and Consumer Perception of Tomato Sponge Cakes

  • Son, Seok-Min;Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.390-393
    • /
    • 2011
  • The effects of differing baking ingredient formulations on physicochemical qualities and consumer preferences were investigated using sponge cakes incorporated with tomato powder, a healthy and beneficial food ingredient, as a model system. Tomato powder was incorporated into cake batter at four different amounts (0%, 10%, 20%, and 30%, w/w) by replacing equivalent amount of wheat flour. After appropriate mixing, sponge cakes were baked and cake quality attributes were evaluated after cooling. Specific volume decreased with an increase in the tomato powder substitution, although not significantly (p>0.05). On the other hand, baking loss increased from 10.3 (control) to 13.4 (30% sample) as the tomato powder level increased in the formulation. Lightness ($L^*$) decreased significantly from 79.5 to 74.1 whereas the firmness significantly increased with the higher incorporation of tomato powder (p<0.05). The consumer preferences on color, taste, and flavor, but not softness, were significantly affected by the amount of tomato powder incorporated in the sample (p<0.05). With respect to overall acceptability, the 20% sample received the highest mean score of 5.1, although this was not significantly different from the 10% sample or control (p>0.05). The incorporation of tomato powder, up to 20%, in the formulation of sponge cakes did not significantly influence the consumers' acceptability in all attributes tested.

Analysis of the Stokes Flow and Stirring Characteristics in a Staggered Screw Channel (엇갈림형 스크류 채널 내부의 스톡스 유동과 혼합특성 해석)

  • Suh Y. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.55-63
    • /
    • 2004
  • The three-dimensional Stokes flow within a staggered screw channel is obtained by using a finite volume method. The geometry is intended to mimic the single screw extruder having staggered arrangement of flights. The flow solution is then subjected to the analysis of the stirring performance. In the analysis of the stirring performance, the stretching-mapping method developed by the author is employed for calculating the materials' stretching exponents, which are to be used in quantification of the mixing effect. The numerical results Indicate that the staggered geometry gives indeed far much better stirring-performance than the standard (nonstaggered) flight geometry. It was also shown that care must be given to the selection of the basis planes for evaluating the local stretching rate, and it turns out that the best method (H-method) has its basis plane just on the half way between the past and future evolution of fluid particles subjected to the defromation. In evaluating the stretching exponent, the expansion ratio must be considered which is one of the characteristic differences of the actual three-dimensional flows from the two-dimensionmal counterparts. The larger axial pressure-difference causes in general the smaller stirring performance while the flow rate is increased. The smaller channel length also increases the stirring performance.

Effect of Carbon Nanofiber Structure on Crystallization Kinetics of Polypropylene/Carbon Nanofiber Composites

  • Lee, Sung-Ho;Hahn, Jae-Ryang;Ku, Bon-Cheol;Kim, Jun-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2369-2376
    • /
    • 2011
  • Effect of heat treatment of carbon nanofibers (CNF) on electrical properties and crystallization behavior of polypropylene was reported. Two types of CNFs (untreated and heat treated at 2300 $^{\circ}C$) were incorporated into polypropylene (PP) using intensive mixing. A significant drop in volume resistivity was observed with composites containing untreated 5 wt % and heat treated 3 wt % CNF. In non-isothermal crystallization studies, both untreated and heat treated CNFs acted as nucleating agents. Composites with heat treated CNFs showed a higher crystallization temperature than composites with untreated CNFs did. TEM results of CNF revealed that an irregular structure of CNFs can be converted into the continuous graphitic structure after heat treatment. Furthermore, STM showed that the higher carbonization temperature leads to the higher graphite degree which presents the larger carbon network size, suggesting that a more graphitic structure of CNFs led to a higher crystallization temperature of PP.

Study on the Oil Resistance, Morphological and Dynamic Mechanical Properties, Flame Retardance of Ethylene Vinyl Acetate Copolymer and Ethylene Propylene Rubber Compounds

  • Sung, Il Kyung;Lee, Won Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • In this experiment, blends of ethylene vinyl acetate rubber (EVM) with a vinyl acetate (VA) content greater than 40 wt% and ethylene propylene rubber (EPM) were prepared by mechanical mixing; a number of parameters of the blends, including oil resistance, morphological and dynamic mechanical properties and flame retardancy, were subsequently measured. In the $100^{\circ}C$ oil resistance test, both the ammonium polyphosphate/dipentaerythritol/expandable graphite (APP/DPER/EG) and aluminum hydroxide (ATH) flame retardant systems showed an increase in volume change with increasing EPM content. For the ATH system, the dispersion shape was coarse and aggregation was observed. The results of a dynamic mechanical test showed slightly higher E' and E'' for the APP/DPER/EG flame retardant system when compared to the single ATH system. For both the APP/DPER/EG and ATH systems, the limited oxygen index (LOI) tests performed at increasing content of EPM showed a LOI value higher than 30, indicating excellent flame resistance.

Improvement of Activated Sludge Dewaterability by Electro-flotation (전해부상을 이용한 활성슬러지의 탈수성 향상)

  • Choi, Young-Gyun;Park, Byung-Ju;Park, Min-Jung;Kim, Yun-Jung;Chung, Tai-Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.677-684
    • /
    • 2006
  • Electro-flotation(EF), a novel sludge thickening method, could improve the dewaterability of activated sludge. The gas(microbubbles) generated during EF decreased the solid-liquid separation time below 1/5 of the time required for gravity sedimentation. In addition, over 90% of the sludge volume reduction could be achieved by EF although the settling characteristics of the sludge was very poor. The SRF(specific resistance to filtration) of the thickened sludge by EF was much lower than that of the sludge thickened by gravity sedimentation. The SRF of the thickened sludge decreased exponentially with increase of gas generation rate of the EF system. Gas generation rate could be controlled by varying the current density of the electrode. Degasing of the microbubbles by vigorous mixing of the thickened sludge layer deteriorated the dewaterability of the sludge. Therefore, it is obvious that the gas bubbles entrapped in the thickened sludge play a key role in the observed dewaterability improvement.

Computations of the Supersonic Ejector Flows with the Second Throat (2차목을 가지는 초음속 이젝터 유동에 관한 수치계산)

  • Choi, Bo-Gyu;Lee, Young-Ki;Kim, Heuy-Dong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1128-1138
    • /
    • 2000
  • Pumping action in ejector systems is generally achieved through the mixing of a high-velocity and high-energy stream with a lower-velocity and lower-energy stream within a duct. The design and performance evaluation of the ejector systems has developed as a combination of scale-model experiments, empiricism and theoretical analyses applicable only to very simplified configurations, because of the generic complexity of the flow phenomena. In order to predict the detailed performance characteristics of such systems, the flow phenomena throughout the operating regimes of the ejector system should be fully understood. This paper presents the computational results for the two-dimensional supersonic ejector system with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the diffuser exit. For a wide range of the operating pressure ratio the flow field inside the ejector system is investigated in detail. The results show that the supersonic ejector systems have an optimal throat area for the operating pressure ratio to be minimized.

Effect of Oyster Mushroom (Pleurotus ostreatus) Powder on Bread Quality

  • Hong, Ga-Hyung;Kim, Ygoung-Soo;Song, Geun-Seoup
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.214-218
    • /
    • 2005
  • Breads were prepared from wheat flour supplemented with oyster mushroom (Pleurotus ostreatus) powder, and effects of the supplementation of oyster mushroom powder on dough rheology and bread quality were examined. The initial pasting temperature in viscoamylograph increased, but peak and final viscosities decreased with the increased amount of oyster mushroom powder. The gradual increase of water absorption, dough development time and mixing tolerance index, and decrease of dough stability with the increased amount of oyster mushroom powder were obtained by farinographs. The supplementation of oyster mushroom powder had an effect on the bread making, resulting in an increase of loaf weight and a decrease of loaf volume. The rough and coarse crumb texture with dark color was observed with the increased amount of oyster mushroom powder. The firmness of bread crumb containing oyster mushroom powder was increased during storage periods. Sensory evaluation revealed that the addition of $1\%$ oyster mushroom powder could be supplemented to make an acceptable quality of bread.

Studies on the Characteristics of Noodles Using Allium fistulosum L. Flour (대파가루를 첨가한 국수의 품질 특성에 관한 연구)

  • 이병영;윤건묵;서지우;김성호
    • The Korean Journal of Community Living Science
    • /
    • v.14 no.3
    • /
    • pp.53-58
    • /
    • 2003
  • This study on the processing of noodles was carried out to increase utilization of Allium fistulosum L., In the areas of total solids in residual liquid, swelling volume, and water absorption, a mixture of 10.0% dried Allium fistulosum L. flour and wheat flour, and a mixture of 25.0% raw Allium fistulosum L. flour and wheat flour both perform similarly to noodles made with just wheat flour. In the area of texture- the gumminess, cutting factor, and chewiness increase as the percentage of dried Allium fistulosum L. flour increases. There is no great difference in these factors between the 10.0% dried and the 25.0% raw mixtures. The color of the noodles with a mixed Allium fistulosum L. flour is green-yellow. As the quantity of Allium fistulosum L. flour increases the color gets darker The over all perception of the noodles made with a mixed Allium fistulosum L. flour was rated higher in color, taste, and smell than regular noodles. This study shows that mixing wheat flour with 10.0% dried Allium fistulosum L. flour or 25.0% raw Allium fistulosum L. flour produces a better noodle product.

  • PDF

Effects of DME Additives on Combustion Characteristics and Nano-particle Distributions in a Single Cylinder Compression Ignition Engine (DME 연료에 첨가제를 혼합하였을 때의 연소 특성 및 배출가스 특성에 관한 연구)

  • Kwon, Seok-Joo;Cha, June-Pyo;Kang, Min-Gu;Lee, Chang-Sik;Park, Sung-Wook;Lim, Young-Kwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.19-25
    • /
    • 2012
  • This study describes effects of DME additives on combustion and exhaust emissions characteristics including nano-particle in a single cylinder compression ignition engine. Considered additives include bio-diesel, n-butanol, and MTBE for increasing kinematic viscosity. Among three additives, n-butanol showed the greatest kinematic viscosity. In addition MTBE showed the highest vapor pressure. In the present study mixing ratios of additives were kept constant at 1 and 10% by volume. Experiments were performed at 1200rpm engine speed and nano-particles were measured by SMPS (Scanning mobility particle sizer) devices. Results of combustion characteristics showed that considered additives had little effects on combustion pressure. However, patterns of heat release rate were dependent on properties of additives. Nano-particles of MTBE were the lowest among considered additives.

Soot Formation Characteristics of Concentric Diffusion Flames with Mixture Fuels (이중동축류 화염을 이용한 혼합연료의 매연생성 특성에 관한 연구)

  • Lee, Won-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.123-128
    • /
    • 2002
  • The synergistic effect of ethylene/propane and ethylene/methane mixtures on soot formation is studied experimentally with a concentric co-flow burner. The integrated soot volume fractions, laser light scattering signal and PAH concentrations are measured for different fuel supply configurations. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the composition of mixture but also by the way of mixing. Comparing to the homogeneously mixed ethylene/propane case, the increase of soot formation is observed when propane is supplied through the inner nozzle, while the decrease is observed when propane is supplied through the outer nozzle. However, the measured PAH concentration distributions are inconsistent with the current view of the synergistic effect of ethylene./propane mixture on soot formation. Virtually no synergistic effect is observed in ethylene-methane flames regardless of the fuel supply configuration, which suggests the important role of $C_3$ species produced during the propane pyrolysis process for the synergistic effect.

  • PDF