• Title/Summary/Keyword: mixing volume

Search Result 719, Processing Time 0.025 seconds

Relationship between Mixograph Properties and Bread Quality of Korean Wheat Cultivars and Breeding Lines (한국산(韓國産) 밀의 Mixograph특성(特性)과 제(製)빵적성(適性)과의 관계(關係))

  • Kim, Chang-Sik;Chang, Hak-Gil;Hah, Duk-Mo;Yoon, Joo-Ok;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.223-227
    • /
    • 1984
  • Quality of flours of 166 different wheat varieties and breeding lines from the 1980-1982 year crop was evaluated with Mixograph. Protein content had a correlation coefficient of 0.68 with sedimentation value and of 0.67 with bread volume. Sedimentation value showed highly significant correlation (r = 0.74) with bread volume. Positive significant correlations were found between protein content and sedimentation value vs. Mixography water-absorption, however the protein content and sedimentation value were not consistently related with mixing time or height to peak. Mixograph curve of the flour in a cultivar showed the specific pattern regardless the environmental conditions.

  • PDF

Isothermal Vapor-Liquid Equilibria at 333.15K and Thermodynamic Excess Properties for the Binary System of Methanol+Dimethyl Carbonate (Methanol+Dimethyl Carbonate 혼합계의 333.15 K 등온 기-액 평형과 열역학 과잉 물성)

  • Han, Kyu-Jin;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.387-392
    • /
    • 2005
  • Recently, dimethyl carbonate (DMC) is considered as an alternative of MTBE (methyl tert-butyl ether), additive for non-leaded gasoline with their fast biodegradation rate and low toxicity. DMC is usually synthesized so far by oxidative carbonylation of methanol, and recently developed synthetic process is also started with methanol. Since the phase equilibria of the system, consisted of DMC and methanol or other reaction products on different temperature and pressure is necessary for the optimum separation process design and operation. However the reported phase equilibria and physical properties for DMC mixtures in the Dortmund Data Bank (DDB; thermodynamic property data bank) are quite rare. Besides, infinitely dilute properties are not found. In this work, isothermal vapor-liquid equilibria at 333.15 K for methanol+DMC binary system and mixing properties, excess molar volume and viscosity deviation at 298.15 K are directly measured and correlated. Additionally, infinitely dilute activity coefficient of methanol in the DMC solvent at three different temperatures are measured and compared with predicted values using modified UNIFAC (Dortmund).

Shear Performance on SFRC Beam Using Recycled Coarse Aggregate (순환골재를 사용한 SFRC 보의 전단성능)

  • Kim, Seongeun;Jeong, Jaewon;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.189-196
    • /
    • 2018
  • Degraded shear performance of reinforced concrete members with recycled coarse aggregate (RCA) compared to flexural strength is a problem. To address this, steel fibers can be used as concrete reinforcement material. In this study, the strength and deformation characteristics of SFRC beams using RCA were to be determined by shear tests. Major experimental variables include the volume fraction of steel fiber (0, 0.5%, 1%), the replacement rate of RCA (0%, 100%), and the shear span ratio (a/d = 1, 2). As a result of the experiment, the shear strength of the specimen increased as the rate of mixing steel fiber increased. For specimens with RCA and 1% steel fiber, the maximum shear strengths increased by 1.77 - 6.25% compared to specimens with normal coarse aggregate (NCA). On the other hand, at 0-0.5% steel fiber, the shear strengths of RCA specimens were reduced by 24.2% to 49.2% compared to NCA specimens. This indicates that reinforcement with 1% volume fraction of steel fiber greatly contributes to preventing shear strength reduction due to the use of RCA.

Bread-making Properties of Rice Flours Produced by Dry, Wet and Semi-wet Milling (건식, 습식 및 반습식 쌀가루에 의한 쌀빵의 특성 비교)

  • Lee, Myung-Hee;Lee, Young-Tack
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.886-890
    • /
    • 2006
  • Rice flours produced by dry, wet, and semi-wet milling methods were used to investigate bread-making properties. Wet milled rice flours were produced by two different steeping temperatures of $25^{\circ}C$ and $55^{\circ}C$, properties of composite flour containing 70% rice flour and 30% wheat flour with the addition of vital wheat gluten were tested. Among rice flours, wet milled rice flour showed increased mixing time and dough stability determined by a mixograph. Wet milled rice flours produced higher loaf volume compared with dry of semi-wet milled rice flours. Wet-milled rice flour steeped at $55^{\circ}C$ appeared to produce good rice breads with relatively high loaf volume. Crumb hardness of bread prepared with wet milled rice flour was lower than the other breads and increased slowly during 3-day storage at $25^{\circ}C$.

Substitution of Rice Flour on Bread-Making Properties (쌀가루 첨가 식빵의 제빵 특성)

  • Choi, In-Duck
    • Food Science and Preservation
    • /
    • v.17 no.5
    • /
    • pp.667-673
    • /
    • 2010
  • Effects of substituting wheat flour with rice flour on bread-making properties were investigated. Rice(Oryza sativa L.) cultivars were 'Goami2(G2)', a functional rice containing higher non-digestible carbohydrates, and 'Chucheongbyeo (CC)', an ordinary Japonica rice. Rice flour was substituted at 10, 20 and 30% in wheat bread formulation, and the composite flour was used for yeast-leavened bread making. Peak and final viscosity of G2 rice flour was significantly lower than that of CC rice flour. Mixograph analysis indicated that replacement of G2 rice flour increased dough water absorption and mixing time compared to wheat flour. But, typical mixograph pattern was not found in the dough from composite flour with CC rice flour. As increasing the amount of rice flour, the G2 rice breads showed a significant decrease in loaf volume, but an increase in bread crumb firmness(g). For the CC rice breads, no significant difference(p<0.05) was observed in loaf volume and crumb firmness, ranging 1012~1050 cc and 433~482g, respectively. The results revealed that Chucheongbyeo is more suitable for bread-making with the composite flour of rice(10~30%) and wheat flour.

Mix design and early-age mechanical properties of ultra-high performance concrete

  • Tang, Chao-Wei
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.335-345
    • /
    • 2021
  • It is known from the literature that there are relatively few studies on the engineering properties of ultra-high performance concrete (UHPC) in early age. In fact, in order to ensure the safety of UHPC during construction and sufficient durability and long-term performance, it is necessary to explore the early behavior of UHPC. The test parameters (test control factors) investigated included the percentage of cement replaced by silica fume (SF), the percentage of cement replaced by ultra-fine silica powder (SFP), the amount of steel fiber (volume percent), and the amount of polypropylene fiber (volume percentage). The engineering properties of UHPC in the fresh mixing stage and at the age of 7 days were investigated. These properties include freshly mixed properties (slump, slump flow, and unit weight) and hardened mechanical properties (compressive strength, elastic modulus, flexural strength, and splitting tensile strength). Moreover, the effects of the experimental factors on the performance of the tested UHPC were evaluated by range analysis and variance analysis. The experiment results showed that the compressive strength of the C8 mix at the age of 7 days was highest of 111.5 MPa, and the compressive strength of the C1 mix at the age of 28 days was the highest of 128.1 MPa. In addition, the 28-day compressive strength in each experimental group increased by 13%-34% compared to the 7-day compressive strength. In terms of hardened mechanical properties, the performance of each experimental group was superior to that of the control group (without fiber and without additional binder materials), with considerable improvement, and the experimental group did not produce explosive or brittle damage after the test. Further, the flexural test process found that all test specimens exhibited deflection-hardening behavior, resulting in continued to increase carrying capacity after the first crack.

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia;Abd Al-Kader A., Al Sayed;Bassam A., Tayeh;Shymaa M.M., Shawky
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.355-368
    • /
    • 2022
  • This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

An Experimental Study on the Manufacturing Method and Performance of Planar Thick Film Heaters for Electric Vehicle Heating (전기자동차의 난방용 면상 후막히터의 제조방법과 성능에 관한 실험적 연구)

  • Chae-Yeol Lee;Jong-Han Im;Jae-Wook Lee;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.685-692
    • /
    • 2024
  • Currently used heating elements are metal and non-metal heating elements, including various types of heaters, and resistance line heating elements have a problem of decreasing thermal efficiency over time, so to solve this problem, a planar heating element using high-purity carbon materials and oxidation-resistant inorganic compounds was applied. Through the manufacture of planar heating elements using CNT, ruthenium composite materials, and ruthenium oxide, physicochemical performance and capacity were increased, and instantaneous responsiveness was increased. Through thick film technology applicable to various base bodies, fine patterns were formed by the screening method in consideration of the fact that the performance of the heat source depends on the viscosity and pattern shape. The heating element was manufactured by thick film printing technology by mixing ruthenium oxide, CNT, Ag, etc. The characteristics of each paste were analyzed through viscosity measurement, and STS 430 was used as a base. Surface temperature and efficiency were measured by testing heaters manufactured for small wind tunnels and real-vehicle experiments. The surface temperature decreased as the air volume increased, and the optimal system boundary was found to be about 200 mm. Among the currently used heating elements, this paper manufactured a planar heating element using thick film technology to find out the relationship between air volume and temperature, and to study the surface temperature.

Influence of Different Nitrogen Fertilizer Application Levels and Application Timing on Gluten Fraction and Bread Loaf Volume During Grain Filling (빵용 밀 품종의 등숙기 질소 시비 시기와 양이 글루텐 분획 및 빵 부피에 미치는 영향)

  • Cho, Seong-Woo;Kang, Taek-Gyu;Park, Chul Soo;Son, Jae-Han;Choi, Chang-Hyun;Cheong, Young-Keun;Yoon, Young-Mi;Kim, Kyong-Ho;Kang, Chon-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.229-238
    • /
    • 2018
  • The purpose of this study was to evaluate the effects of nitrogen fertilization amount and timing of application on protein content, dough properties, change in protein fraction, and bread loaf volume for Korean wheat cultivars, Baekkang, Joongmo2008, and Saekeumkang, for bread with a superior gluten composition during the grain filling stage. Protein content increased with an increase in the amount of N and timing of application. The SDS segmentation volume (SDSS) increased with an increase in N, but there was no effect of the timing of N application on SDSS. An increase in N amount and timing of application caused a difference in dough properties, such as water absorption, mixing time, and tolerance, among the cultivars. Soluble and insoluble polymeric and monomeric protein contents increased with an increase in N amount and timing of application the three Korean wheat cultivars. The effects of N amount and application timing on bread loaf volume (BLV) varied among the cultivars. The BLV of Saekeumkang increased regardless of the N amount and timing of application, but that of Baekkang and Joongmo2008 cultivars was reduced. However, there was a positive correlation between protein content with the addition of N fertilization and BLV. In addition, SDSS, mixing time, and protein fractions were positively correlated with BLV. Since the response of fertilizer conditions was different for each wheat cultivar, it is necessary to build a suitable fertilizing system for each of them. Additionally, since the environment is changing, such as abnormal climate during the maturing period, research is needed to establish appropriate fertilizer conditions for varieties of bread wheat.