• Title/Summary/Keyword: mixing volume

Search Result 719, Processing Time 0.025 seconds

EMP shielding of mortar mixed with SiC and graphite

  • Oh-Seong Park;Hyeong-Kyu Cho
    • Journal of Ceramic Processing Research
    • /
    • v.23 no.2
    • /
    • pp.165-170
    • /
    • 2022
  • Using electromagnetic shielding technology, the exterior walls of buildings can prevent the penetration of electromagnetic waves. This effectively reduces the electromagnetic field intensity and electromagnetic pulse inside buildings. Therefore, in recent years, researchers have focused on developing electromagnetic shielding technology. In this study, we analyzed the physical properties and EMP shielding efficiency of shielding materials, such as silicon carbide (SiC), obtained as a byproduct of the semiconductor manufacturing processes, and graphite mixed with mortar, used in the external walls. The shielding materials underwent pretreatment, such as grinding, before mixing them with mortar. Because shielding materials are expensive, the shielding efficiency was calculated by mixing the respective shielding materials with mortar in only the outermost 10% of the sample mortar volume. Moreover, we calculated the shielding efficiency of the different samples of mortar with shielding materials throughout the volume of the samples using shielding effectiveness (SE) estimation formula. The predicted SE values of the samples of mortar mixed with granular SiC, graphite powder, and SiC powder were 20 dB, 18 dB, and 28 dB, respectively. The SE of the sample of mortar mixed with SiC powder is approximately equal to 30 dB, that is, the maximum shielding efficiency (99.9%).

Experimental Reinforcement Agent for Damaged Walls of Payathonzu Temple Murals in Bagan, Myanmar

  • Lee, Na Ra;Lee, Hwa Soo;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.36 no.4
    • /
    • pp.284-295
    • /
    • 2020
  • This study focuses on reinforcement agents for wall damage, such as cracks, breakage, or delamination, for mural paintings from the Payathonzu temple. Experiments were conducted with filling and grouting agents based on the reinforcing method. In the filling reinforcement experiment, different mixing ratios of lime to sand, and additives (jaggery, seaweed glue, and Primal SF-016) were used. In the grouting reinforcement experiment, the mixing ratio of lime and pozzolan was the same, and the additive types were identical to the filling reinforcement experiment. The filling reinforcement experiment showed that there were fewer physical changes such as contraction, with a greater mixing ratio of lime to sand, however, the compressive strength decreased as the mixing ratio increased. With additives, the change in volume of agent decreased and the compressive strength increased, which was especially prominent for jaggery and Primal SF-016. The grouting reinforcement experiment showed that there was a remarkable contraction with an increased amount of moisture that originates from the characteristic of grouting agents that requires flowability. With additives, the water content of the agent decreased, whereas the compressive strength and adhesion increased. Among the additives, Primal SF-016 exhibited the highest compressive strength, and seaweed glue exhibited the most considerable viscosity and adhesion. The study results showed that the characteristics of reinforcement agents vary according to the mixing ratio and additives of the filling and grouting agents. Therefore, it is necessary to selectively apply the mixing ratio and additives for different reinforcement agents considering the wall damage for conservation treatments.

Mechanical Properties of Recycled Coarse Aggregate concrete using Two-Stage Mixing Approach (TSMA 방법을 이용한 순환 굵은골재 콘크리트의 기계적 성능)

  • Kwon, Seung Jun;Lim, Hee Seob;Lee, Han Seung;Lim, Myung Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.60-67
    • /
    • 2018
  • As the lack of specific aggregation intensifies, the development of alternative resources is urgent. Construction waste is increasing every year, but recycled aggregate is used as a low value added material. Various studies are currently underway at the national level. In this paper, the mechanical performance of the concrete according to the concrete mixing method and the replacement amount of the circulating coarse aggregate was compared and evaluated. Concrete mixing method was normal mixing approach(NMA) method, two-stage mixing approach1 (TSMA1) method, two-stage mixing approach2 (TSMA2) method. Fresh concrete was tested for air content, slump test, and unit volume weight. Compressive strength and flexural strength were tested in hardened concrete. According to the TSMA method, the mechanical performance difference of concrete is shown, and the strength is decreased according to the circulating coarse aggregate replacement amount.

Experimental Study on Soot Formation in Opposed-Flow Ethylene Diffusion Flames by Mixing DME as an Alternative Fuel (대체 연료인 DME 혼합에 의한 대향류 에틸렌 확산화염내 매연 생성에 대한 실험적 연구)

  • Yoon, Doo-Ho;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.301-306
    • /
    • 2010
  • DME(Di-Methyl Ehter, $CH_3OCH$) is currently attracting worldwide attention due to its environmentally friendly characteristics. Until now it was researched as a major alternative fuel of diesel automobile because it is a clean fuel producing low soot. Therefore, in this study, in order to investigate the effect of DME mixing on number density and size of soot particle, DME has been mixed in opposed-flow ethylene diffusion flame with the mixture ratios 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and size of soot particles. The experimental results showed that the soot concentration of mixture flames with the mixture ratios 5% and 14% produces soot more, even though that of 30% was decreased. This means that even though DME has been known to be a clean fuel for soot formation, the mixing of DME in diffusion flame of ethylene, where acetylene maintains high concentration in soot formation regions, could produce enhanced production of soot.

Effect of N2 Diluent on Soot Formation Characteristics in Ethylene Diffusion Flames (에틸렌 확산화염 내 질소 혼합이 매연 생성 특성에 미치는 영향)

  • Jun-Soo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.356-362
    • /
    • 2023
  • The risk of climate change has been long acknowledged, and ongoing efforts to overcome this issue, within the shipping sector, with the international maritime organization playing a central role. Conducting research on characteristics of soot formation is crucial to control its occurrence within the combustion process. In this study, the laser extinction method and chemical reaction numerical analysis were employed to examine the alterations in the state of chemical species associated with flame temperature, flame visual, and soot formation by mixing nitrogen, an inert gas, in the counterflow diffusion flame based on ethylene gas. The findings of the study suggest that as the mixing ratio of nitrogen increased, both the flame temperature and soot volume fraction decreased. Additionally, the area in which soot particles were distributed also decreased, and the volume fraction decrease rate declined when the mixing ratio increased by more than 30%. The mole fraction of the chemical species involved in soot growth also decreased. the chemical species associated with the HACA reaction were affected by variations in the hydrocarbon fuel ratio, and the chemical species related to the odd carbon path were confirmed to be affected by the flame temperature as well as the hydrocarbon fuel ratio.

High Volume Mineral Admixture Mortar According to Waste Refractory and Mixing Ratio (저미분 폐내화물 종류 및 혼입율 변화에 따른 혼화재 다량치환 모르타르의 공학적 특성)

  • Han, Sang-Yoon;Park, Do-Young;Cha, Cheon-Soo;Kim, Hyun-Woo;Yoon, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.134-135
    • /
    • 2015
  • This study analysed compressive strength and the expansion characteristic to utilize a high volume mineral admixture mortar for a aerated mortar and a plastering mortar. In this experiment, the result shows that the compressive strength gain was satisfactory in case that WR was replaced within 5%. Also, the difference between WR1 and WR was insignificant. It shows that the drying shringkage properties at large was showed being satisfactory generally compared with Plain when WR was replaced, but the effect was not significant.

  • PDF

The Study on Strength Properties by Cluing Temperature of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 양생온도에 따른 강도특성에 관한 연구)

  • 이동하;이민경;백민수;김성식;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.681-686
    • /
    • 2002
  • In this study, a high volume fly-ash substituted concrete experiments in two curing temperature circumstances - 35${\circ}$, 20.${\circ}$, High volume fly-ash concrete is tested in fresh concrete properties and hardeded concrete properties. There is slump, air contents, concrete setting tests. 3, 7, As fresh concrete test items and 28 days water curing compressive strength is measured in the hardened concrete test. The purpose of this study is to submit a various fly-ash concrete data for application to field. The result of this study is that the best strength is developed at the plain concrete cured 20 ${\circ}$, and Mixing F43 shows the best strength among specimens which cured at 35${\circ}$,

  • PDF

Influence of gradation on shear strength and volume change behavior of silty sands

  • Monkul, Mehmet Murat
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.401-417
    • /
    • 2013
  • The results of an experimental program regarding the effects of gradation on shear strength and volume change behavior of silty sands are presented. Consolidated drained direct shear tests were performed on two clean base sands and twelve silty sands obtained by mixing those base sands with two different non-plastic silts at various fines contents (${\leq}$ 25%). Drained shear strengths were observed to be not significantly influenced by either base sand gradation or silt gradation or fines content for the studied range. Increasing fines content has increased the volumetric contraction of specimens at similar void ratio. However, the amount of increase in volumetric contraction of silty sands were found to be affected by silt gradation when other influencing factors such as fines content, base sand gradation and mineralogy were kept the same. Moreover, the amount of increase in volumetric contraction of silty sands were also found to be affected by base sand gradation when other influencing factors such as fines content, silt gradation and mineralogy were kept the same.

Ventilation and energy performance evaluation of the office building with variable air volume system (변풍량시스템이 적용된 사무소건물의 환기 및 에너지성능평가)

  • Kwon, Y.L.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.100-108
    • /
    • 1999
  • Variable air volume(VAV) system designed for improving interior environmental control has steadily evolved over the last 20 years. Major advantage of VAV system is that VAV technology allows a single system to provide simultaneous heating and cooling without a seasonal changeover. Research is carried out in order to study the influence on the energy consumption and ventilation performance of two kinds of office building with a mixing ventilation system. Data required for performance evaluation in these building is obtained from the central monitoring station and by measurement.

  • PDF

Experimental Study on Film Boiling of CuO-Water Nanofluid Droplets (산화구리-순수 물 나노유체 액적의 막비등에 관한 실험적 연구)

  • Yeung Chan Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.3
    • /
    • pp.134-139
    • /
    • 2024
  • An experimental study was conducted on the film boiling of nanofluid droplets at a surface temperature range of 300 to 500℃. The nanofluid was made by mixing pure water with copper oxide powder of diameter of 80 nm. The initial volume of the nanofluid droplet ranged from about 21 to 44 ㎕, and the volume, base diameter, and time were measured during the evaporation process. It was found that nanofluid droplets evaporate faster as the surface temperature increases. Also experimental results showed the droplets evaporate quickly at the beginning of evaporation, but as the volume of the droplets decreases, the evaporation rate gradually slows down, and this trend becomes stronger as the surface temperature increases. In addition, the evaporation rate of nanofluid droplets was slightly faster than that of pure water droplets, this was believed to be because the contact area of nanofluid droplets increased.