• Title/Summary/Keyword: mixing speed

Search Result 511, Processing Time 0.03 seconds

Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows (텐덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측)

  • Noh, Jun-Gu;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.469-475
    • /
    • 2003
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed differently according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical. The numerical results agree with the measured data in respect of their tendency. It turned out that 0% of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for 75% case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

  • PDF

An Experimental Study on the Performance of Turbocharged Diesel Engine (터보과급 디이젤기관의 성능에 관한 실험적 연구)

  • Chae, J.O.;Chung, S.C.;Baek, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.76-86
    • /
    • 1994
  • Combustion of diesel engine depends on the mixing of air and evaporating fuel during ignition delay greatly. Variation of air-fuel mixing rate and ignition delay for engine operating condition causes difference of combustion, performance and exhaust emissions. This study is investigated in a turbocharged diesel engine of IDI swirl chamber type. In the results, As injection timing is advanced until $12.6^{\circ}$ BTC, ignition delay decreases. NOx concentration and smoke level in exhaust gas increases for advanced injection timing Ignition delay, combustion period, pressure rise rate and exhaust gas temperature are increased with increasing engine speed. And ignition delay at high load is more decreased than that at low load. Ignition delay and combustion period are decreased with increasing intake pressure. Power increases, temperature and CO, NOx concentration in exhaust gas decreases as intake pressure increases. With increasing load, ignition delay is decreased and combustion period, motoring pressure are increased.

  • PDF

Laser doppler velocimeter using the self-mixing effect of a $CO_2$ laser (산란광의 되먹임을 이용한 $CO_2$ 레이저 도플러 속도 측정)

  • 최종운;김용평;김윤명
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.157-161
    • /
    • 1996
  • A simple laser Doppler velocimeter(LDV) using a $CO_2$ laser with its self-mixing effect has been developed. We measured the laser power which was modulated by Doppler frequency, when monochromatic laser light was focused to a moving target. The Doppler-shifted frequency was controlled by changing rotating speed of the turntable or the cosine of the angle between the direction of the laser beam and that of the rotating velocity.

  • PDF

Analysis of Combustion Air Flow in Incinerator (소각로의 연소 공기 유동 해석)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.

Effect of Mixing Shear on Flocculation of Anionic PAM and Cationic Starch Adsorbed PCC and Its Effect on Paper Properties (교반 속도가 음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘의 응집과 종이 물성에 미치는 영향)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • The effects of stirring speed during filler modification by dual polymers on flocculation and reflocculation of PCC (precipitated calcium carbonate) particles and its effect on handsheet properties were elucidated. PCC surface was modified by adsorbing A-PAM (anionic polyacrylamide) and C-starch (cationic starch) in series at various stirring speeds. It was found that increasing stirring speed during filler modification decreased the initial floc size of PCC. Continuous stirring with the same speed for filler modification resulted in the decrease of a floc size, eventually reached a steady state. The variations in a floc size was influenced by the stirring speed during filler modification: the lower the stirring speed during filler modification, the larger the floc size variations. Conclusively, the stability of PCC floc could be improved by increasing the stirring speed. In addition, the stirring speed influenced the handsheet properties. The smaller the PCC floc, the lower the strength of handseet. However, too much larger floc size also deteriorated paper strength. There exists an optimum floc size in term of paper strength which shall be controlled by stirring speed during filler modification.

An Experimental Study on Che Spray Characteristic of Pintle Type Nozzle in a High Temperature and High Pressure Chamber (고온.고압용기 내에서 핀틀노즐의 분무특성에 관한 실험적 연구)

  • 송규근;정재연;정병국;안병규;오은탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • The characteristics of fuel spray have an important effect on engine performance such as power, specific fuel consumption and emission because fuel spray controls the mixing and combustion process in an engine. Therefore, if the characteristics of fuel spray can be measured, they can be effectively used for improving engine performance. The major factors controlling fuel spray are injection pressure, ambient pressure and engine speed. In this study, the experiment is performed in a high temperature and high pressure chamber. In experiments, spray tip penetration, spray angle and spray tip velocity are measured at various injection pressure (10 and 14 MPa), ambient pressure(3,4 and 5 MPa), fuel pump speed(500, 700 and 900 rpm). Experimental results are useful for deriving an experimental spray equation and design an optimal engine. The results showed that injection pressure, ambient pressure and fuel pump speed are important factors influencing on the characteristics of spray. 1) Injection pressure influences on the characteristics of spray. That is, as injection pressure is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle and spray penetration are increased as fuel pump speed is increased.

High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers (헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정)

  • Kim, Min-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.172-178
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state -of-the-art reaches the region of sub-nanometers. So far, the demand has been met by increasing the clock speed that drives the electronics involved fur the phase measurement of the Doppler shift, but its further advance is being hampered by the technological limit of modem electronics. To cope with the problem, in this investigation, we propose a new scheme of phase -measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with a stable reference signal generated from a special phase- locked-loop. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special form of frequency up-down counting technique is combined with the super-heterodyning. This allows performing required phase unwrapping simply by using programmable digital gates without 2n ambiguities up to the maximum velocity guaranteed by the original beat frequency.

Optical and Acoustic Properties of Binary Mixtures of Butanol Isomers as Oxygenates with Cyclohexane, Benzene and Toluene at 308.15 K

  • Verma, Sweety;Gahlyan, Suman;Rani, Manju;Maken, Sanjeev
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.663-678
    • /
    • 2018
  • Refractive index and speeds of sound for the binary mixture of isomer of butanol (1) + cyclohexane, benzene and toluene (2) were measured at 308.15 K. The measured data were used to calculate deviation in refractive index ${\Delta}n$, ultrasonic speed ${\Delta}u$, isentropic compressibility $K_s^E$, available volume $V_a$, excess intermolecular free length $L_f$ and molecular association $M_A$. All the derived properties were correlated with polynomial equation. Ultrasonic speed data were predicted using various empirical correlations like Nomoto, van Dael, impedance dependence and theoretically with Schaaff's collision factor theory (CFT). Jacobson free length theory (FLT) was used to calculate $L_f$. The measured refractive index was also correlated with various mixing rules. The deviation in refractive index Δn and ultrasonic speed ${\Delta}u$ was used to determine the intermolecular interactions.

Optimum mixing rate of used media for saving the production cost of Flammulina velutipes (팽이버섯(Flammulina velutipes) 생산비 절감을 위한 폐배지 적정 혼합비율)

  • Jung, Kyung Ju;Choi, Duck Soo;Bang, Geuk Pil;Chung, Ki Chul
    • Journal of Mushroom
    • /
    • v.7 no.1
    • /
    • pp.22-26
    • /
    • 2009
  • These experiments were conducted to find the optimum mixing rate of used media for saving the production cost of Flammulina velutipes. The materials for media formation was used needle-leaf tree sawdust, media that finished 1th cultivation of F. velutipes, corncob meal, and rice bran, wheat bran as nutrition source. We inoculated the F. velutipes in 14 kinds of different media types and checked the spawn growth speed, fruit body quality and quantity. Two nutrition agents, which is rice bran and wheat bran, did not affected the incubation period, but the effective stem number, quality and quantity of fruit body was better at rice bran than wheat bran. The quality of fruit body produced at mixed 20% of used media (needle-leaf tree sawdust 60% + used media 20% + rice bran 20%) was similar to control plot (needle-leaf tree sawdust 80% + rice bran 20%), but the yield was improved 10% than control plot 130g. According as the used-media mixing amount increases, quality and quantity of fruit body became low remarkably. Therefore, the optimum mixing amount of used-media was 20% and it increased 10% of fruitbody yield.

  • PDF

Effect of Mixing Pattern of Different Types of Bioreactor on Enzymatic Hydrolysis of Cellulose (각종 섬유질 효소당화 반응조내의 현탁액의 혼합교반양상이 효소당화에 미치는 영향)

  • 박진서;박동찬이용현
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 1989
  • Celluose is an insoluble substrate, therefore, a proper mixing of the cellulose suspension is essential for an effective enzymatic hydrolysis. To study the effect of mixing motion of various enzyme reactors on enzymatic hydrolysis of cellulose, three distinct types of biroreator: vertical impeller type bioreator(VITB), horizontal paddle type bioreactor(HPTB), and tumbling drum type bioreactor(TDTB), were assembled and their performance was compared. The optimal agitation speed was 100rpm for VITB and HPTB, 200rpm for TDTB. The saccharification efficiency of each reactor was compared under the optimal agitation intensity. The highest degree of saccharification was achieved in the case of VITB, especially, at high cellulose concentration. The VITB seems to be the most suitable type of bioreactor that can maintain proper mixing pattern for effective enzyme reaction. In the view of energy consumption, the TDTB showed the lowest value: however, the energy consumption was rapidly increased at high concentration of celluose. To dertermine the most suitable type of bioreactor, the entire process, including substrate cost, substrate concentration, and feasibility of scale-up, needs to be evaluated.

  • PDF