• Title/Summary/Keyword: mixing quicklime

Search Result 8, Processing Time 0.022 seconds

Improvable Characteristics of Clay Layers with Time Lapse (시간경과에 따른 점토 지반의 개량 특성)

  • 이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Constructions on the soft clay layer of low strength and high compression bring out many problems. Recent studies show that strength of the soft clay layer could be substantially improved by mixing quicklime. For the purpose, a series of uniaxial compression tests were performed, using quicklime, in order to analyze strength characteristics. The major test results are summarized following : When water content is 90%, the strength is observed to precipitously increase between 3~14 days, then, the extent slowly increase in relative terms. When water content is 130%, the strength is observed to precipitously increase up to 28 days. When the strength of water content 90% is compared to that of water content 130%, the initial strength of the former is higher than that of the latter. The analyses show that the improvement of soft clay layers can be realized by the mixture of both quicklime and sand, and by the mixture of quicklime only.

  • PDF

Variation of Unit Weight and Compressive Strength by Long-Term Dry Shrinkage of Reinforced Soil Mixture (장기적 건조수축에 의한 보강혼합토의 단위 중량 및 압축강도 분석)

  • 이상호;차현주;장병욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.90-97
    • /
    • 2000
  • In this study, the variation of unit weight and unconfined compressive strength were investigated, calcium carbonate, quicklime, portland cement, 19mm length monofilaments and fibrillated fiber were used as reinforcement materials. And calcium chloride was added to cement and calcium carbonate reinforced soil mixture in order to accelerate setting and hardening speed. It appears that unit weight is highest in calcium carbonate reinforced soil mixture with mixing rate of 9%. According to increasing the amount of fiber in soil mixture, the unit weight decreased. It shows that the more the amount of monofilament fiber is added in soil mixture, the higher the compressive strength is, but the compressive strength is decreased in fibrillated fibrillated fiber added soil mixture with more than 1.0% of mixing rate.

  • PDF

Variations of Density and Strength for Reinforced Soil Mixture by Long-Tern Dry Shrinkage (장기적 건조수축에 의한 보강혼합토의 밀도 및 강도 변화)

  • 이상호;차현주;장병욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.239-244
    • /
    • 1999
  • In this study , the variation of dry density and unconfined compressive strength were investigated, calcium carbonate, quicklime, portland cement, 19mm monofilaments and fibrilllated fibers were used as reinforcement materials. And calcium chloride was added to cement and calcium carbonate reinforced soil mixture in order to accelerate setting and hardening speed. It appears that dry density is highest in calcium carbonate reinforced soil mixture with 9% of mixing rae. According to increasing the amount of fibers, in soil mixture , the dry density decreased. The more the amount of monofilament fibers is the higher the compressive strength. But the compressive strength is decreased in fibrrillated fiber added soil mixture with more than 1.0% of mixing rate.

  • PDF

Solidification of Digested Sewage Sludge with Converter Slag (제강전로(製鋼轉爐)슬래그를 이용한 하수소화(下水消化)슬러지의 고화처리(固化處理))

  • Kim, Eoung Ho;Cho, Jin Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.108-115
    • /
    • 1995
  • The feasibility study of using converter slag as a solidifying agent of digested sewage sludge cake has been performed. The availability of converter slag as solidifying agent has been investigated by several trial tests. Based on the trial test results, the optimum mixing ratios of sludge cake and solidification additive are estabilished. Finally the solidification characters of sludge cake are elucidated by SEM and EDS. It is ascertained that converter slag with a small amount of quicklime enhences the solidification. From the result of pH test, overall pH of specimens tends to decrease slowly with curing time. After solidifying specimens had been cured for 7 days, these are water-cured for 24 hours. The weight and strength of all the specimens are nearly the same regardless of the mixed ratios of solidifying agent. The result of leaching tests for four heavy metal ions, Cd, $Cr^{6+}$, Pb and Cu show that the leaching strength becomes below the decision criteria of the specific wastes, respectively. The SEM observation of the delicate structure shows that needlelike crystals appear after solidification which are not observed before. From the EDS analysis, it is found that the main ingredients of needlelike crystals are Ca, Si, Al and O.

  • PDF

Convergent Study on the Preparation of Sludge Modified Soils of Inorganic Consolidation Soil (무기계고화재의 슬러지 개량토 제조에 관한 융합연구)

  • Han, Doo Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.157-162
    • /
    • 2017
  • Inorganic stiffening agents were prepared by mixing paper sludge incineration ash, blast furnace slag fine powder quicklime, anhydrous gypsum and fly ash. The main components of the solidifying agent developed for sludge treatment were SiO, $Al_2O_3$, $TiO_2$, $Fe_2O_3$, $Mn_2O_3$, CaO, MgO, $Na_2O$, $K_2O$, $P_2O$, and $SO_3$. Unlike cement, the developed solidifying agent did not contain $Cr^{6+}$, which is known as a carcinogen. Heavy metals and oil contaminated soil were mixed with solidifying agent and cured for 7 days and the heavy metal content was below the environmental standard. Sewage sludge cake, food waste and solidifying agent were mixed with each other, and after 7 days curing, soil component test showed that the heavy metal content was below the environmental standard. After mixing the sludge, solidifying agent and additive mixture into the beaker, the ammonia concentration was measured to be 0 after 3 days.

Development of Autoclave Aerated Concrete Using Circulating Fluidized Bed Combustion Ash (순환유동층 보일러애쉬를 활용한 경량기포 콘크리트 개발)

  • Lee, Chang Joon;Song, Jeong-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • In this study, as a method to increase the recycling of circulating fluidized bed combustion ash(CFBCA), CFBCA was utilized to produce autoclave aerated concrete product since CFBCA contains quicklime and calcium sulfate components that are required for the manufacture of autoclave aerated concrete. Successful achievement of such objective will bring cost reduction with high value addition, saving of natural resources, and the reduction of environmental load. Various mixing designs were designed to evaluate the properties of autoclave aerated concrete made of CFBCA. Based on series of experimental program, prototypes mix design for factory manufacturing was obtained. According to the experimental results, it was confirmed that gypsum can be replaced with CFBCA through the method of pre-treating the CFBCA as a slurry. It was possible to produce competitive autoclave aerated concrete products using CFBCA.

The Characteristics on Compressive Strength of Mixed Coal Ash in Ash Pond (회사장 혼합석탄재의 압축강도 특성)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.61-66
    • /
    • 2014
  • The various recycling methods of mixed coal ash have been developed considerably and it's recycling quantity has been increased. However, the more relatively finer grain content of coal ash in ash pond is increased the more it's quantity is increased in recycling as products for drainage in soft ground etc. Accordingly, the geotechnical properties of mixed coal ash in ash pond would be inferior and it's recycling rate should reach the limitations in increase. In this study, to recycle mixed coal ash contained fine grain in considerably amount as products for strength, etc. By adding binder to it and manifesting, it's compressive strength is stronger than the criteria, these are suggested; 1) the variety of compressive strength test performed on mixed coal ash of various grain distributions as main material, 2) the kind of binder, it's mixing quantity and the optimum content rate range of fine grain coal ash that the compressive strength stronger than a certain compressive strength is manifested. Cement is more excellent than quicklime as binder in manifesting stronger compressive strength and the sieve type to sort it is #40 sieve in order to recycle all mixed coal ash in ash pond efficiently as products for drainage as well as products for strength, etc. And, it could increase insufficient compressive strength remarkably that content of pure sand is more in the rate as pure sand and the part of mixed coal ash in ash pond to pass through #40 sieve is mixed in the ratio of 2 to 8.

Stabilization of Pb Contaminated Army Firing Range Soil using Calcined Waste Oyster Shells (소성가공 굴껍질을 이용한 군부대 사격장내 고농도 납 오염토양의 안정화)

  • Moon, Deok-Hyun;Cheong, Kyung-Hoon;Kim, Tae-Sung;Khim, Jee-Hyeong;Choi, Su-Bin;Ok, Yong-Sik;Moon, Ok-Ran
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The objective of this study was to investigate the effectiveness of stabilization for army firing range soil highly contaminated with Pb (total Pb: 29,000 mg/kg) using calcined waste oyster shells. The calcination was conducted to activate quicklime from calcite. In order to evaluate the effectiveness of calcination, both natural oyster shells (NOS) and calcined oyster shells (COS) were applied to the Pb contaminated soil. Stabilization was conducted by mixing the contaminated soil with oyster shell media at 5-20 wt% and cured for 28 days. Following 28 days of curing, Pb leachability was measured based on the Korean Standard Test method (0.1 N HCl extraction). The treatment results showed that the COS treatment outperformed the NOS treatment. All of the NOS treatments failed to meet the Korean warning standard of 100 mg/kg. However, the Pb concentrations were significantly reduced to 47 mg/kg and 3 mg/kg upon 15 wt% and 20 wt% COS treatments, respectively which passed the Korean warning standard. Moreover, -#20 mesh materials were more effective than the -#10 mesh materials in effectively reducing Pb leachability. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) results indicated that Pb immobilization was strongly linked to Al and Si.