• Title/Summary/Keyword: mixing process

검색결과 1,752건 처리시간 0.031초

응집공정이 세라믹 정밀여과막 파울링에 미치는 영향 (Effect of coagaulation on ceramic microfiltration membrane fouling)

  • 황영진;임재림;최영종;왕창근
    • 상하수도학회지
    • /
    • 제23권4호
    • /
    • pp.459-469
    • /
    • 2009
  • It is well known that coagulation pretreatment can reduce foulants prior to membrane filtration. The purpose of this research was to investigate the effects of coagulation on fouling of ceramic microfiltration membrane($0.1 {\mu}m$) using pilot plant of $150m^3/day/train$ capacity. Train A membrane system has pretreatment process of ozonation and coagulation while train B has only coagulation. Two types of coagulation operation were investigated: back mixer(rapid mixing with or without slow mixing) which is a conventional mechanically stirred mixer and an inline static mixer. Ozone dose rate for train A was 1 mg/L and ozone contact time was 12 min. The coagulation dose(PACl 10% as $Al_2O_3$) rate was changed 20~40 mg/L according to experimental schedule. In this experimental conditions, the coagulation of back mixer type with rapid mixing(GT=72,000) and slow mixing(GT=45,000) was the best effective in reduction of ceramic membrane fouling regardless preozonation. Especially, the effect of inline static mixer was sensitive to change in water quality. Ozonation mainly affected irreversible fouling rather than reversible fouling in accordance with less adsorption of NOM on the membrane surface. Thus, the increase rate of the nomalized TMP(trans membrane pressure) at $25^{\circ}C$ for train A was relatively lower than that of train B under same coagulation process with same coagulant dosage. The best performance of ceramic membrane appeared in case of combined process with ozonation, therefore this integrated process is able to archive less coagulant dosing and secure a stability of ceramic membrane system.

교반기용 임펠러가 달린 축의 베어링 지지점에 따른 진동특성 (Vibration Characteristics of Impeller Shaft for Mixing Machine According to the Positions of a Bearing Support)

  • 홍도관;안찬우;백황순;최석창;박일수
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.68-73
    • /
    • 2009
  • This paper deals with the dynamic characteristics of the impeller shaft model which is the most important part in developing the resin mixing machine. The can is rotating by air motor in mixing machine. Then the end of shaft is fixed. The bearing support is to increase the fundamental natural frequency. The natural frequency analysis using finite element analysis software are performed on the imported commercial impeller shaft model. This paper presents calculated bearing stiffness of Soda, Harris and modified Harris formula considering contact angle according to bearing supported position. The most important fundamental natural frequency of the impeller shaft except bearing support is around 13.932 Hz. This paper presents one bearing and two bearings support position to maximize the 1st natural frequency. The maximized fundamental natural frequency is around 48.843 Hz in one bearing support and 55.52 Hz in two bearings support.

  • PDF

배합중 카본블랙 혼입속도에 천연고무 점도가 미치는 영향 (The Effect of Viscosity of Natural Rubber on Incorporation Rate of Carbon Black in The Mixing)

  • 강용구;한신;이계정;류동완;박찬영
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.97-103
    • /
    • 1999
  • The power curve during rubber mixing presents useful information for the understanding of rubber mixing process, because the power curve is determined the mixing state of rubber at the point. The time to the second peak on the power curve is known as carbon black incorporation time, BIT. This study gets the quantity relationship of BIT and viscosity of natural rubber, so by determining the mixing time of the compound on the ground of viscosity of the raw rubber. The mixing with natural rubber and carbon black is examined for various grade natural rubbers, encompassing a wide range of Mooney viscosity. Alter smoothing the mixing power curve using a polynomial, the carbon black incorporation time, BIT, was determined time to second power peak on the curve, The BIT's versus specific values on Mooney viscometer test curve show a linear relation, Especially, the peak of initial maximum torque on Mooney viscometer curve, PMT, is most relevant property relating to the BIT. PMT is useful index for determined optimum mixing time, To apply this results at the mixing, we effectively control the natural rubber mixing but can also know the grading of natural rubber upon processability.

  • PDF

급속혼화공정에서 응집제 주입률에 따른 미세입자의 성장특성 (Characteristics of Micro Floc in a Rapid Mixing Step at Different Coagulant Dose)

  • 전항배;박상민;박노백;정경수
    • 상하수도학회지
    • /
    • 제21권2호
    • /
    • pp.243-252
    • /
    • 2007
  • Effects of alum dosage on the particle growth were investigated by monitoring particle counts in a rapid mixing process. Kaolin was used for turbid water sample and several other chemicals were added to adjust pH and ionic strength. The range of velocity gradient and mixing time applied for rapid mixing were $200{\sim}300sec^{-1}$ and 30~180 sec, respectively. Particle distribution in the synthetic water sample was close to the natural water where their turbidity was same. The number of particles in the range of $10.0{\sim}12.0{\mu}m$ increased rapidly with rapid mixing time at alum dose of 20mg/L, however, the number of $8.0{\sim}9.0{\mu}m$ particles increased at alum dose of 50mg/L. The number of $14.0{\sim}25.0{\mu}m$ particles at alum dose of 20mg/L was 10 times higher than them at alum dose of 50mg/L. Dominant particle growth was monitored at the lower alum dose than the optimum dose from a jar test at an extended rapid mixing time(about 120 sec). The number of $8.0{\sim}14.0{\mu}m$ particles was lower both at a higher alum doses and higher G values. At G value of $200sec^{-1}$ and at alum dose of 10-20mg/L, residual turbidity was lower as the mixing time increased. But at alum dose above 40mg/L and at same G value, lower residual turbidity occurred in a short rapid mixing time. Low residual turbidity at G value of $300sec^{-1}$ occurred both at lower alum doses and at shorter mixing time comparing to the results at G value of $200sec^{-1}$.

이종 폐지 혼합 비율에 따른 종이 품질 및 초지 공정 변화 분석 (Analysis of Paper Qualities and Forming Process at Varied Mixing Ratios of Different Kinds of Recovered Paper)

  • 최도침;이광섭;김창근;조병욱;류정용
    • 펄프종이기술
    • /
    • 제46권3호
    • /
    • pp.28-36
    • /
    • 2014
  • The kind and the mixing ratio of recovered papers would affect the quality of final recycled paper. In this study, effects of the mixing ratio of various domestic recycled papers (old news print (ONP), old corrugated container (OCC) and coated paper (CP)) on variations in physical properties of paper and its productivity were investigated. When the mixing ratio of CP grade increased, the freeness (CSF) of recycled pulp was increased while paper strength and white water turbidity was decreased. Paper strength was decreased as the percentage of OCC was higher than ONP. When ONP was mixed with OCC, no adverse effect was observed except the increased drainage resistance. It is expected that these results could be utilized as fundamental data to establish regulations for the recovered paper grades according to mixing ratios of different kinds of them.

초음파를 이용한 미세조류 연속분리공정 (Continuous Microalgae Separation Process Using Ultrasonic Waves)

  • 김성복;정상화
    • 한국생산제조학회지
    • /
    • 제24권4호
    • /
    • pp.407-413
    • /
    • 2015
  • Research for renewable energy is being performed since it has the merits of little pollution of the environment and sustainable energy resources. Microalgae is attractive as a renewable energy resource. Biomass of the microalgae can be produced by mass culturing, and bulk harvest technology of is needed to produce biomass continuously. Recently, ultrasonic waves were used to harvest the cultivated microalgae continuously. In this study, the separation process using ultrasonic waves was performed to effectively harvest the microalgae. An ultrasonic wave separation resonator was designed and manufactured based on the acoustic field analysis. Separation experiments using design of experiment were carried out, and the influence of experimental variables from the ultrasonic wave separation process was investigated. Mixing conditions of variables were estimated to obtain high separation efficiency and a large microalgae harvest. Experimental results for suitable mixing conditions were compared with simulation results calculated from the state equation.

전동차의 폐 FRP 내장재 재활용 공정 개발 (Development of Recycling Process for the used FRP of Electric Motor Unit(EMU))

  • 이형태;김용기;이철규;이재영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.19-21
    • /
    • 2007
  • In recent, a great number of electric motor units (EMUs) have been disused in Korea according as its legal duration is 25 years. Generally, the disused EMUs are disposed by selling original form or scrapping for junk. Until now, any efficient disposal system for disused EMUs has not existed. The purpose of this study was to develop the recycling process for the FRP used as an interior panel of EMU. This process was to manufacture a product mixing binders, fillers and the powdered FRP. The characteristics of a product were changed with the mixing ratio of the powdered FRP. The optimal ratio of the powdered FRP was from 10 % to 15 % (w/w). In the future, the application of this process can enhance the efficiency of resource recycling and decrease the cost of waste treatment in the EMU industry.

  • PDF

생물학적 노출평가를 통한 타겟 제조업 근로자의 공정별 인듐 노출위험성 조사 (Investigating the potential exposure risk to indium compounds of target manufacturing workers through an analysis of biological specimens)

  • 원용림;최윤정;최성렬;김은아
    • 한국산업보건학회지
    • /
    • 제24권3호
    • /
    • pp.263-271
    • /
    • 2014
  • Objectives: Along with the several cases of pulmonary disorders caused by exposure to indium that have been reported in Japan, China, and the United States, cases of Korean workers involved in processes that require handling of indium compounds with potential risk of exposure to indium compounds have also been reported. We performed biological monitoring for workers in various target manufacturing processes of indium, indium oxide, and indium tin oxide(ITO)/indium zinc oxide(IZO) in domestic factories. Materials: As biological exposure indices, we measured serum concentrations of indium using inductively coupled plasma mass spectrometry, and Krebs von den Lungen 6(KL-6) and surfactant protein D(SP-D) using enzyme-linked immunosorbent assays. We classified the ITO/IZO target manufacturing process into powdering, mixing, molding, sintering, polishing, bonding, and finishing. Results: The powdering process workers showed the highest serum indium level. The mixing and polishing process workers also showed high serum indium levels. In the powdering process, the mean indium serum concentration in the workers exceeded $3{\mu}g/L$, the reference value in Japan. Of the powdering, mixing, and polishing process workers, 83.3%, 50.0%, and 24.5%, respectively, had values exceeding the reference value in Japan. We suppose that the reason of the higher prevalence of high indium concentrations in powder processing workers was that most of the particles in the powdering process were respirable dust smaller than $10{\mu}m$. The mean KL-6 and SP-D concentrations were high in the powdering, mixing, and polishing process workers. Therefore, the workers in these processes who were at greater risk of exposure to indium powder were those who had higher serum levels of indium, as well as KL-6 and SP-D. We observed significant differences in serum indium, KL-6, and SP-D levels between the process groups. Conclusions: Five among the seven reported cases of "indium lung" in Japan involved polishing process workers. Polishing process workers in Korea also had high serum levels of indium, KL-6, and SP-D. The outcomes of this study can be used as essential bases for establishing biological monitoring measures for workers handling indium compounds, and for developing health-care guidelines and special medical surveillance in Korea.

고속 혼화공정을 이용한 PMD용 화약 ZPP 제작 및 특성분석 (The Characteristic Analysis and the Manufacture of Explosive ZPP on PMD using the High Speed Mixing Process)

  • 김상백;심정섭;김준형;류병태
    • 한국추진공학회지
    • /
    • 제22권3호
    • /
    • pp.8-13
    • /
    • 2018
  • ZPP(Zirconium Potassium Perchlorate)는 산화제 potassium perchlorate, 금속원료 zirconium, 결합제 Viton 조성의 점화제이다. ZPP는 항공우주산업, 추진제 점화원, 자동화 산업에 사용되고 있다. 본 연구에서는 PMD(Pyrotechnic Mechanical Device)에 사용되는 ZPP의 제조공정 및 형상/열량/압력값과 같은 특성을 연구하였다. ZPP 제작 시, 원료들을 고속으로 교반하여 ZPP가 균일한 입자크기 및 형상으로 제작될 수 있도록 혼화공정을 설계하였다.

고속 혼화공정을 이용한 PMD용 화약 ZPP 제작 및 특성분석 (The Characteristic Analysis and the Manufacture of Explosive ZPP on PMD using the High Speed Mixing Process)

  • 김상백;심정섭;김준형;류병태
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.445-450
    • /
    • 2017
  • ZPP(Zirconium Potassium Perchlorate)는 산화제 potassium perchlorate, 금속원료 zirconium, 결합제 Viton 조성의 점화제이다. ZPP는 항공우주산업, 추진제 점화원, 자동화 산업에 사용되고 있다. 본 연구에서는 PMD(Pyrotechnic Mechanical Device)에 사용되는 ZPP의 제조공정 및 형상/열량/압력값과 같은 특성을 연구하였다. ZPP 제작 시, 원료들을 고속으로 교반하여 ZPP가 균일한 입자크기 및 형상으로 제작될 수 있도록 혼화공정을 설계하였다.

  • PDF