• Title/Summary/Keyword: mixing mechanism

Search Result 325, Processing Time 0.024 seconds

An Analysis on the Bleeding Effect of SCW Ground Heat Exchanger using Thermal Response Test Data (열응답시험 데이터를 이용한 SCW형 지중열교환기 블리딩 효과 분석)

  • Chang, Keun-Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.512-520
    • /
    • 2020
  • Recently, the applications of the standing column well (SCW) ground heat exchanger (GHX) have increased significantly in Korea as a heat transfer mechanism of ground source heat pump systems (GSHP) because of its high heat capacity and efficiency. Among the various design and operating parameters, bleeding was found to be the most important parameter for improving the thermal performance, such as ground thermal conductivity and borehole thermal resistance. In this study, a bleeding analysis model was developed using the thermal response test data, and the effects of bleeding rates and bleeding locations on the thermal performance of anSCW were investigated. The results show that, when the ground water flows into the top of anSCW, the time variation of circulating water temperature decreased with increasing bleeding rate, and the ground thermal conductivity increases by as much as 179% with a 30% bleeding rate. When the ground water flows into the bottom of the SCW, the circulating water temperatures become almost constant after the increase in the beginning time because the circulating water exchanges heat with the ground structure before mixing with the ground water at the bottom.

Evaluation of Destratification Efficiency by Combined Effect of Adjacent Plumes through 2-Phase and 3D Hydrodynamic Analysis in a Stratified Fluid (Bubble plume의 중첩효과가 저수지 성층파괴 효율에 미치는 영향에 대한 수리동역학적 2상-3차원 평가)

  • Yum, Kyung-Taek;Park, Hee-Kyung;Ahn, Je-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.219-231
    • /
    • 2004
  • The use of air diffuser system to ameliorate the reservoir by breaking stratification is now widespread. This study focuses on the hydrodynamic behavior of bubble plumes, which is the major mechanism of destratification and their combined effect of adjacent plumes on destratification efficiency. By introducing 2-phase Computational Fluid Dynamics(CFD) technique, we could suggest the optimal diffuser spacing having optimal destratification efficiency by simply analyzing the complex destratification procedures varying with the seasonal stratification intensity and bubble flow rate. Lab experiments were also carried out to verify CFD model in thermally stratified fresh water which quite differs from former researches using salts. This study showed that the mixing efficiency strongly depends on the spacing of neighboring plumes. When diffuser spacing is lower than 1.5 times the depth, the combined effect is stronger; as Plume Number(PN) is increased, the efficiency is strongly affected by spacing. If the distance is shorter than the depth of water, the efficiency increases linearly in proportion to PN. Otherwise, the efficiency increases non-linearly. These findings suggest that the combined effect should be more quantitatively taken into consideration for design and operation of air-diffuser destratification system, and recommend that the optimal destratification efficiency will be when plume number is 1000 and the spacing between neighboring diffusers is 1.5 times the depth.

Experimental Study on the Mitigation of Harmful Algal Blooms by Mono-Minerals (환경친화성 단일 광물질에 의한 적조구제 실험)

  • 장영남;채수천;배인국;박맹언;김필근;김선옥
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.557-561
    • /
    • 2003
  • It is important to find out a new material having high removal efficiency for the harmful algal blooms because the dispersion of Hwangto in a large amount to the sea water may bring some ecologically unfavorable problems. For this purpose, the efficiency of several natural and synthetic mineral species for the mitigation of algal blooms was measured. The mixing ratio of monominerals and the sea water with 3,000∼5,000 cells/$m\ell$ of Cochlodinium polykrikoides was 10 g/${\ell}$ and the removal ratio was measured by counting the living cells after the dispersion time of 10, 30 and 60 min., respectively. According to the experimental results, the removal ratio by illite, kaolinite, montmonmorillonite, red mud, Na-A type of zeolite ranged 84-92% after 1hr of contact time, which is comparable to that of Hwangto. The size of above monominerals ranged 3∼50${\mu}m$. Meanwhile, the amorphose material and hematite with the size of 50∼100 nm showed excellent removal ratio of more than 99% after 30min. of dispersion. The results of the study showed that the removal ratio was not related to the chemical composition and pH of the minerals applied but to the grain size. The experimental results strongly suggest that the main mitigation mechanism would be the contact and coagulation.

Impact of antimicrobial resistance in the $21^{st}$ century

  • Song, Jae-Hoon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.3-6
    • /
    • 2000
  • Antimicrobial resistance has been a well-recognized problem ever since the introduction of penicillin into clinical use. History of antimicrobial development can be categorized based on the major antibiotics that had been developed against emerging resistant $pathogens^1$. In the first period from 1940 to 1960, penicillin was a dominating antibiotic called as a "magic bullet", although S.aureus armed with penicillinase led antimicrobial era to the second period in 1960s and 1970s. The second stage was characterized by broad-spectrum penicillins and early generation cephalosporins. During this period, nosocomial infections due to gram-negative bacilli became more prevalent, while those caused by S.aureus declined. A variety of new antimicrobial agents with distinct mechanism of action including new generation cephalosporins, monobactams, carbapenems, ${\beta}$-lactamase inhibitors, and quinolones characterized the third period from 1980s to 1990s. However, extensive use of wide variety of antibiotics in the community and hospitals has fueled the crisis in emerging antimicrobial resistance. Newly appeared drug-resistant Streptococcus pneumoniae (DRSP), vancomycin-resistant enterococci (VRE), extended-spectrum ${\beta}$-lactamase-producing Klebsiella, and VRSA have posed a serious threat in many parts of the world. Given the recent epidemiology of antimicrobial resistance and its clinical impact, there is no greater challenge related to emerging infections than the emergence of antibiotic resistance. Problems of antimicrobial resistance can be amplified by the fact that resistant clones or genes can spread within or between the species as well as to geographically distant areas which leads to a global concern$^2$. Antimicrobial resistance is primarily generated and promoted by increased use of antimicrobial agents. Unfortunately, as many as 50 % of prescriptions for antibiotics are reported to be inappropriate$^3$. Injudicious use of antibiotics even for viral upper respiratory infections is a universal phenomenon in every part of the world. The use of large quantities of antibiotics in the animal health industry and farming is another major factor contributing to selection of antibiotic resistance. In addition to these background factors, the tremendous increase in the immunocompromised hosts, popular use of invasive medical interventions, and increase in travel and mixing of human populations are contributing to the resurgence and spread of antimicrobial resistance$^4$. Antimicrobial resistance has critical impact on modem medicine both in clinical and economic aspect. Patients with previously treatable infections may have fatal outcome due to therapeutic failure that is unusual event no more. The potential economic impact of antimicrobial resistance is actually uncountable. With the increase in the problems of resistant organisms in the 21st century, however, additional health care costs for this problem must be enormously increasing.

  • PDF

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(I) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(I))

  • 원종한;안태호;최광휘;최상흘;손진군;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.680-686
    • /
    • 2002
  • The solidification/stabilization mechanism of each cementious material was investigated. It was found that when $C_3$S was hydrated , the Pb element could be transferred to the insoluble Ca[Pb(OH)$_3$.$H_2O$]$_2$and the Cr element to the CaCr $O_4$$H_2O$. The addition of heavy metal tends to delay the hydration until initial 7 days. The Pb element as also delayed the hydration and the Cr element was substituted for the ettringite. On the occasion of the hydration of $C_4$ $A_3$ $S^{S}$, the Pb and Cr ions were solidified/stabilized by the substitution into the ettringite and/or monosulfate. Leaching of the Pb, Cr and Zn elements in the solidified material was extremely little, indicating that heavy metals were effectively solidified/stabilized in the hydrated cementious materials. Solidification/stabilization of heavy metal ions in the industrial wastes such as the STS, BF and COREX sludge was investigated. In case of the mixing ratio of cement and slag was 3 : 7, leaching of hazardous heavy metal ions was very little, indications that the solidification and stabilization was very successful.l.

Computational Fluid Dynamics(CFD) Simulation for a Pilot-scale Selective Non-catalytic Reduction(SNCR) Process Using Urea Solution (요소용액을 이용한 파일럿규모 SNCR 공정에 대한 CFD 모델링 및 모사)

  • Nguyen, Thanh D.B.;Kang, Tae-Ho;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.922-930
    • /
    • 2008
  • The selective non-catalytic reduction(SNCR) performance is sensitive to the process parameters such as flow velocity, reaction temperature and mixing of reagent(ammonia or urea) with the flue gases. Therefore, the knowledge of the velocity field, temperature field and species concentration distribution is crucial for the design and operation of an effective SNCR injection system. In this work, a full-scale two-dimensional computational fluid dynamics(CFD)-based reacting model involving a droplet model is built and validated with the data obtained from a pilot-scale urea-based SNCR reactor installed with a 150 kW LPG burner. The kinetic mechanism with seven reactions for nitrogen oxides($NO_x$) reduction by urea-water solution is used to predict $NO_x$ reduction and ammonia slip. Using the turbulent reacting flow CFD model involving the discrete droplet phase, the CFD simulation results show maximum 20% difference from the experimental data for NO reduction. For $NH_3$ slip, the simulation results have a similar tendency with the experimental data with regard to the temperature and the normalized stoichiometric ratio(NSR).

Application of Artificial Neural Networks for Prediction of the Flow and Strength of Controlled Low Strength Material (CLSM의 플로우 및 일축압축강도 예측을 위한 인공신경망 적용)

  • Lim, Jong-Goo;Kim, Yeon-Joong;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • The characteristics of flow and strength of CLSM depend on the combination ratio including the fly ash, pond ash, cement, water quantity and etc. However, it is very difficult to draw the mechanism about the flow, strength and the mixing ratio of each components. Therefore, the method of calculation drawing the flow about the component ratio of CLSM and compression strength value is needed for the valid practical use of CLSM. To verify the efficiency of artificial neural network, new data which were not used for establishing the model were predicted and compared with the results of laboratory tests. In this research, it was used to evaluate the learning efficiency of the artificial neural network model and the prediction ability by changing the node number of hidden layer, learning rate, momentum, target system error and hidden layer. By using the results, the optimized artificial neural network model which is suitable for a flow and compressive strength estimate of CLSM was determined.

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Transport Concept (시간영역 광전자파 분석기 (Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 오염물질 운송개념)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.713-724
    • /
    • 1996
  • The time-series resident solute concentrations, monitored at two field plots using the automated 144-channel TDR system by Kim (this issue), are used to investigate the dominant transport mechanism at field scale. Two models, based on contradictory assumptions for describing the solute transport in the vadose zone, are fitted to the measured mean breakthrough curves (BTCs): the deterministic one-dimensional convection-dispersion model (CDE) and the stochastic-convective lognormal transfer function model (CLT). In addition, moment analysis has been performed using the probability density functions (pdfs) of the travel time of resident concentration. Results of moment analysis have shown that the first and second time moments of resident pdf are larger than those of flux pdf. Based on the time moments, expressed in function of model parameters, variance and dispersion of resident solute travel times are derived. The relationship between variance or dispersion of solute travel time and depth has been found to be identical for both the time-series flux and resident concentrations. Based on these relationships, the two models have been tested. However, due to the significant variations of transport properties across depth, the test has led to unreliable results. Consequently, the model performance has been evaluated based on predictability of the time-series resident BTCs at other depths after calibration at the first depth. The evaluation of model predictability has resulted in a clear conclusion that for both experimental sites the CLT model gives more accurate prediction than the CDE model. This suggests that solute transport at natural field soils is more likely governed by a stream tube model concept with correlated flow than a complete mixing model. Poor prediction of CDE model is attributed to the underestimation of solute spreading and thus resulting in an overprediction of peak concentration.

  • PDF

Biological Properties of Propolis Isolated from Honeybees (프로폴리스의 생물학적 특성)

  • Kim, Sung-Kuk;Woo, Soon-Ok;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.686-697
    • /
    • 2021
  • Propolis is a resinous substance produced by honeybees, which they use to protect their hives. Honeybees produce propolis by mixing exudates from the various trees and plants with saliva and beeswax. It has been used since around 300 B.C. as a folk medicine to cure wounds. Propolis contains many physiologically active components, such as flavonoids, phenolic compounds, and beeswax. Because of its functional components, propolis has a wide spectrum of biological applications. The compounds in propolis and its biological activity can vary according to the location of nectar source and extraction method. Propolis is most commonly known for its anti-microorganism activity against bacteria, viruses, and fungi. Artepillin C and caffeic acid phenethyl ester (CAPE) have been identified as regulatory compounds that reduce inflammation and exert immunosuppressive reactions on T lymphocytes. Through its anti-inflammatory activity, propolis exhibits anti-tumor activity, including the inhibition of cancer cell proliferation, the blocking of tumor signaling cascades, and antiangiogenesis. However, for the more apply of propolis its analysis of nectar source, identifying of propolis compound, the molecular mechanism of propolis and the investigation of compounds synergistic effects are essential. In this study, we described the physiological activity of propolis isolated from honeybees.

An Analytical Model Proposal Considering Different Surface Type of Bond Behavior between GFRP Rebar and Concrete (GFRP 보강근의 외피형상을 고려한 부착 해석모델 제안)

  • Park, Ji-Sun;Song, Tae-Hyeob;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2019
  • The bond analysis model equation was proposed through the regression analysis of the experimental values of bond behavior for each rebar. In order to verify the appropriateness of the bond analysis model equation, the bond behaviors calculated by the proposed bond analysis model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models. The former models can not consider the different properties of GFRP rebar according to composed materials, mixing and manufacturing method and the latter has limitation to express the relationships between bond behavior because of derived formula by numerical analysis. This study proposed the analytical model different considering bond mechanism according to surface type. In order to verity the appropriateness of the bond analytical model, the bond behaviors calculated by the proposed bond analytical model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models.