• Title/Summary/Keyword: mixing layer

Search Result 675, Processing Time 0.028 seconds

Numerical Simulation of Mixing and Combustion in a Normal Injection of the Scramjet (초음속 연소기에서의 혼합과 연소현상에 관한 수치해석)

  • Moon, Su-Yeon;Lee, Choong-Won;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.475-480
    • /
    • 2001
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation $(k-\varepsilon)$ model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

  • PDF

Characteristics of Stability and Intensity of Vertical Transfer in the Western Channel of the Korea Strait

  • Chung, Jong Yul
    • 한국해양학회지
    • /
    • v.10 no.2
    • /
    • pp.57-66
    • /
    • 1975
  • Structure of thermocline, characteristics of stability and intensity of vertical transfer have been studied with hourly oceanographic data in each layers on Line 207 from 1968 to 1969. It is found that a typical thermocline is formed at depths of 10 to 50 meters in summer and early autumn and its core is located near depths of 25 meters. The maximum diffusion coefficient of vertical turbulent is found to be 140$\textrm{cm}^2$/sec at the surface layer(i.e., 0-10 meters), while the minimum is 5$\textrm{cm}^2$/sec at depths of 25 meters, consistent with characteristics of stability and structure of thermocline layers. Our computed diffusion coefficient and stability indicate that the mixing hardly takes place below depths of 80 meters during summer and early autumn, but for the rest of the season mixing could move up to the depth of 50 meters. It appears that the Western Channel of the Korea Strait consist of three different water masses during summer and autumn, and for the rest of the season, two kinds are present.

  • PDF

A Study on Flow Characteristics of Confined Circular Jet within Pipe (이중원관 구속제트의 유동특성에 관한 연구)

  • Seo M. S.;Choi J. W.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF

Velocity and temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, Cheol-Jae;Chung, Han-Shik;Park, Chan-Su;Cho, Dae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.290-295
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

Self-Ignition of Hydrogen in a Pipe by Rupture of Pressure Boundaries (파열 압력경계 조건에 따른 파이프 내에서의 수소 자발 점화)

  • Lee, Hyoung Jin;Kim, Sung Don;Kim, Sei Hwan;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.95-96
    • /
    • 2013
  • Numerical simulations are conducted to investigate the mechanism of spontaneous ignition of hydrogen within a certain length of downstream pipe released by the failure of pressure boundaries of various geometric assumption. The results show that local ignition is developed in limited area such as boundary layer and the mixing of hydrogen and air is weak at the planar pressure boundary conditions, whereas the flame fronts at the contact region are developed at the pressure boundaries of the spherical shape.

  • PDF

Analysis of Combustion Air Flow in Incinerator (소각로의 연소 공기 유동 해석)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.

Heat generation characteristics of the heating mortar according to repeated electricity supply (반복전기공급에 따른 발열모르타르의 발열 특성)

  • Kim, Young-Min;Lim, Chang-Min;Gwon, Hyeon-U;Lee, Gun-cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.170-171
    • /
    • 2022
  • In recent years, due to the occurrence of traffic accidents caused by black ice in winter, the number of personal injuries is increasing rapidly. Black ice is a phenomenon that occurs like a thin layer of ice on the road surface. Accordingly, many developments of heat-generating concrete are being developed to remove ice by increasing the temperature by supplying constant electricity to places where black ice is likely to occur. These heating elements are being developed by mixing a conductive material represented by carbon nanotubes with concrete. However, research up to now has been focused on efficient temperature rise and derivation of the optimum mixing ratio, and the evaluation of maintaining heat generation performance during continuous repetition is insufficient. Therefore, in this study, a heating test specimen was manufactured and 50V power was repeatedly supplied to evaluate the heating characteristics.

  • PDF

Development of Three-Dimensional Cohesive Sediment Transport Model and Diffusion of Suspended Sediment at Suyoung Bay (3차원 점성토(粘性土) 운송(運送) 모델의 개발(開發)과 수영만(水營灣)의 부유물질 확산)

  • Kim, Cha Kyum;Lee, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.179-192
    • /
    • 1993
  • Three-dimensional cohesive sediment transport model, COSETM-3, is develpoed using a finite difference method. The model results are compared with the physical experimental results for the relative concentration with time at the mid-depth of the recirculating flume and are found to be in good agreement. This model is applied to Suyoung Bay in Pusan of Korea to verify the field applicability of the model and to investigate on the SS (suspended solids) diffusion phenomena at the bay. Behaviors of discharging SS from Suyoung River at normal river flow and flood river flow are predicted. The numerical results appear to be reasonable and qualitative agreement with field data. The influence of settling velocity on the concentration distribution of SS is also investigated. In case of not considering settling velocity, SS concentration at surface layer is higher than that at lower layer, but in case of considering settling velocity, SS concentration at lower layer is higher than that at surface layer. The fluctuation of SS concentration at surface layer is large due to the strong mixing, but the fluctuation of the concentration at lower layer is small due to the weak mixing. SS diffusion patterns at flood river flow are similar to those at normal river flow, while the concentration at that flow is so much higher than that at this flow. SS concentration increases with time until the peak discharge occurs, but the concentration decreases with time with decreasing river flow after the peak discharge.

  • PDF

Characteristics of the Adhesion Layer for the Flexible Organic Light Emitting Diodes (플렉시블 OLED 소자 제작을 위한 접합층 특성 연구)

  • Cheol-Hee Moon
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.86-94
    • /
    • 2023
  • To fabricate all-solution-processed flexible Organic Light-Emitting Diodes (OLEDs), we demonstrated a bonding technology using a polyethyleneimine (PEI) as an adhesion layer between the two substrates. As the adhesion layer requires not only a high adhesion strength, but also a high current density, we have tried to find out the optimum condition which meets the two requirements at the same time by changing experimental factors such as PEI concentration, thickness of the layer and by mixing some additives into the PEI. The adhesion strength and the electrical current density were investigated by tensile tests and electron only device (EOD) experiments, respectively. The results showed that at higher PEI concentration the adhesion strength showed higher value, but the electrical current through the PEI layer decreased rapidly due to the increased PEI layer thickness. We added Sorbitol and PolyEthyleneGlycohol (PEG) into the 0.1 wt% PEI solution to enhance the adhesion and electrical properties. With the addition of the 0.5 wt% PEG into the 0.1 wt% PEI solution, the device showed an electrical current density of 900 mA/cm2 and a good adhesion characteristic also. These data demonstrated the possibility of fabricating all-solution-processed OLEDs using two-substrate bonding technology with the PEI layer as an adhesion layer.

Concentration Interaction of Premixed and Triple-layer Flames in Lean Burn with Methane Fuel (희박연소에서 발생하는 메탄의 농도 상호작용과 삼중화염에 대한 연구)

  • Oh, Tae-Kyun;Chung, Suk-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2006
  • The performance in the practical combustion system including reciprocating engines and gas turbine combustors is being much governed by turbulent reacting flow that is often analyzed by both a laminar flamelets concept and flame interaction. The characteristics of laminar flame interaction have been investigated numerically to provide basic understanding of wrinkled turbulent flames under concentration interaction resulting from inhomogeneity in fuel-air mixing, especially focused on the transition of flame characteristics such as diffusion flame, partially premixed diffusion flame, and triple-layer flame by the variation in the degree of premixedness. The extinction stretch rates to the premixedness have also been obtained in this paper. The boundary defining the regime of the existence of triple-layer flames as functions of both stretch rate and premixedness has been determined which agrees well with previously reported experiment measuring OH radical concentration peaks based on PLIF.