• Title/Summary/Keyword: mixing factors

Search Result 582, Processing Time 0.029 seconds

Physiochemical Characteristics of Coastal Pseudo-Estuarine Environment Formed During the Summer Flood season in the South Coast of Korea (한국 남해 연안역에서 여름 홍수기에 형성된 연안 염하구 환경의 물리 -화학적 특성)

  • 임동일;엄인권;전수경;유재명;정회수
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, we investigated the physiochemical characteristics of temporal estuarine environment formed during the summer flood season (consecutive rainy days with average 50 mm day$^{-1}$ precipitation) in the coastal area of South Sea of Korea. The freshwater from the Seomjin River was characterized by lower temperature, salinity and pH, and high concentrations of COD and nutrients. In the summer flood season, such peculiar Somejin-River freshwater was dispersed southward along the coast of Yeosubando-Dolsando-Geumodo, form-ing temporal estuarine environment (defined as "Coastal Pseudo-Estuary" in this study) throughout the entire study area (as far as 60 km from the Seomjin River mouth). Compared to the winter dry season, the DIN/DIP ratio was almost doubled (16-36) during the summer flood season. This excessive nitrate supply during the summer flood season was probably due to nitrogenous fertilizer. Distribution and behaviors of physiochemical factors in this coastal pseudo-estuarine environment were controlled not only by the runoff of the Seomjun River (physical mixing of river water with seawater) but also by the biogeochemical estuarine processes which are mostly similar to those of the river estuary.r estuary.

The Effect of Wind (Typhoon), Tide and Solar Radiation for the Water Stratification at Deukryang Bay in Summer , 1992 (하계 득량만의 연직혼합과 관련된 바람 (태풍), 조석, 태양에너지의 영향)

  • Lee, Byung-Gul;Cho, Kyu-Dae;Hong, Chol-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.256-263
    • /
    • 1995
  • This paper presents the evidence on the considerably strong stratification - destratification(SD) phenomena during spring - neap tidal cycle in summer of 1992 based on the observed temperature, salinity and density data. To find out the main factors causing SD in the bay, we computed the rate of potential energy balance of the surface heat flux, tidal and wind stirring proposed by Simpson and Hunter (1974) and Simpson and Bowders (1981) using observed data. It was found that the energy of the wind stirring was one - order smaller than those of the heat flux and the tidal stirring. It means that the variation of stratification phenomena in the bay mainly depend on tidal stirring and sea surface heating in summer if there was no exceptionally strong wind event like a typhoon. Finally, we tested the effects of typhoon on the mixing characteristics of the bay using the example of a empirical typhoon model. It was found that when wind speed is larger than 15m/sec in Deukryang Bay, the wind energy was always larger than the average heating energy based on empirical typhoon model test. Particularly, typhoon passed on the left side of the bay, strong wind energy happened, which is almost the same as tidal energy of spring tide.

  • PDF

Distributional characteristics of phytoplankton and nutrient limitation during spring season in Jinhae Bay (춘계 진해만에서 식물플랑크톤 증식과 제한영양염 분포특성)

  • Son, Moonho;Kim, Dongseon;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3345-3350
    • /
    • 2014
  • We investigated to assess the relationships between the major nutrients and phytoplankton dynamics during the spring season in 2010 and 2011 at 23 stations in Jinhae Bay, Korea. The bay is divided into four different zones based on pollutant sources and geographical characteristics. Nutrient limitation (>80%) was significant in Zone II, which is located in central bay and is influenced by the water well mixed from outer bay. The limited nutrient was followed in Zone III and IV that was occupying between 17% and 83%. However, the low levels are being kept below 35% in Zone I, which is characterized by the semi-enclosed eutrophic area of Masan and Haegam bays. Based on the PCA (principle component analysis) analysis, the nitrogen (N) sources in 2010 were particularly dominant and it may be due to the water mixing and wastewater formed from bottom layers and sewage. In 2011, major nutrients including nitrogen, silicon and phosphorus were dominant in the bay and are supplied by the river discharge after rainfalls with low salinity conditions. In particular, the N nutrients being supplied in 2010 are correlated with pennate diatoms Pseudo-nitzchia spp. and is not related to the phytoplankton population densities in 2011. The present study suggests that N sources play an important role in the proliferation of diatom, and the rapid nutrient uptakes by them are potential nutrient limitation factors in the bay.

Improvement of Cycle Performance of Graphite-Silicon Monoxide Mixture Negative Electrode in Lithium-ion Batteries (흑연과 실리콘 일산화물의 혼합물로 구성된 리튬이온 이차전지용 음극의 사이클 성능개선 연구)

  • Kim, Haebeen;Kim, Tae Hun;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.155-163
    • /
    • 2019
  • Mixture electrodes of a graphite having a good cycle performance and a silicon monoxide (SiO) having a high capacity are fabricated and their cycle performances are evaluated as negative electrodes for lithium-ion batteries. The electrode prepared by mixing the natural graphite and carbon-coated SiO in a mass ratio of 9:1 shows a reversible capacity of $480mAh\;g^{-1}$, 33% higher than that of graphite. However, the capacity deteriorates continuously upon cycling due to the volume change of silicon monoxide. In this study, the factors that can improve the cycle performance have been discussed through the change in the configurations of the electrode and the electrolyte. The electrode using the carboxymethyl cellulose (CMC) binder shows the best cycle performance compared to the conventional binders. The electrode sing the CMC and styrene-butadiene rubber (SBR) binder not only has almost the similar cycle characteristics with the electrode using the CMC binder but also has the better rate capability. When the fluoroethylene carbonate (FEC) is used as an electrolyte additive, the cycle life is improved. However, the electrolyte with 5 wt% of FEC is appropriate because the rate capability decreases when the content of FEC is increased to 10 wt%. In addition, when the mass loading of the electrode is lowered, the cycle performance is greatly improved. Also, enhanced cycle performance is achieved using the roughened Cu current collector polished by abrasive paper.

Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM (비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화)

  • Lee, Seung Bum;Li, Guangzong;Zuo, Chengliang;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.606-614
    • /
    • 2019
  • A mixing ratio of the oil in water (O/W) emulsion of palm oil and the non-ionic surfactant (Tween-Span type) possessing different hydrophile-lipophilie balance (HLB) values was evaluated in this work. An optimum condition was determined through analysis of main and interaction effects of each quantitative factor using central composite design model-response surface methodology (CCD-RSM). Quantitative factors used by CCD-RSM were an emulsification time, emulsification speed, HLB value and amount of surfactant. On the other hand, the reaction parameters were the viscosity and mean droplet size of O/W emersion. Optimized conditions obtained from CCD-RSM were the emulsification time of 12.7 min, emulsification speed of 5,551 rpm, HLB value of 8.0 and amount of surfactant of 5.7 wt.%. Ideal experimental results under the optimized experimental condition were the viscosity of 1,551 cP and mean droplet size of 432 nm which satisfy the targeted values. The average error value from our actual experiment for verifying the conclusions was below to 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimized palm oil to water emulsification.

Development of an UV Distribution Model for the Design of a Submerged UV Disinfection Reactor and Its Application (침지형 자외선 살균조 설계를 위한 자외선 분포 모델의 개발 및 적용)

  • Park, Changyeun;Kim, Sunghong;Choi, Younggyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.505-512
    • /
    • 2021
  • A 3D model was developed to calculate the UV intensity of a submerged-type UV disinfection reactor. Numerical experiments were conducted by inputting the design factors of an open channel-type disinfection reactor and a pipe-type disinfection reactor that were installed in an actual sewage treatment plant. The following data were obtained: The average UV intensity of the installed open channel-type reactor and pipe-type reactor was 7.87 mW/cm2 and 13.09 mW/cm2, respectively; the UV dose reflecting the UV irradiation time and taking into account attenuation effects such as mixing imbalance, lamp aging, temperature, and fouling, was expected to be 21.1 mJ/cm2 and 24.8 mJ/cm2, respectively, and these values are 5 % and 24 % higher than the target UV dose of 20 mJ/cm2, respectively. By using the UV3D model, the optimal lamp position, which maximizes the average UV intensity without changing the size of the disinfection reactor or lamp output power, can be found. In this case, by only adjusting the lamp position, the average UV intensity can be increased by 0.9 % for the open channel-type and 0.5 % for the pipe-type, respectively. A better average UV intensity can be obtained by model simulation. By adjusting the horizontal and vertical ratio of the open channel-type reactor and by moving the lamp position, the average UV intensity can be increased by 7.4 % more than the present case.

Analysis of characteristics of natural resins using organic residue analysis organic materials attached on wooden coffins from Singok-dong Site, Uijeongbu (유기잔존물 분석을 활용한 천연 수지 특성 분석 - 의정부 신곡동 유적 출토 목관 부착 유기물을 중심으로 -)

  • YUN, Eunyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.78-89
    • /
    • 2021
  • Organic residues analysis is an analysis method that reveals the types of organic material samples by using the characteristic that main components constituting substances are different depending on the species of animals and plants. In this study, scientific analysis of the organic residues attached to wood coffins in the Joseon Dynasty Hoemyo excavated from the site of Singok-dong, Uijeongbu was used to identify the types of remnants and to use them as information to restore the uses of organic materials and the way they lived in the past. As a result of FT-IR analysis of the residue attached to the inside of the wood, it was estimated to be a natural plant resin material. In addition, as a result of analysis by GC-MS to confirm the characteristic factors of natural resins, diterpenoids (abietane) and pimaran (pimarane), such as dehydroabietic acid and pimaric acid (diterpenoid) compounds, and saturated and unsaturated fatty acid components were detected together. Diterpenoid compounds are components mainly found in Pinaceae resins. It is confirmed in the literature that rosin, a representative material of Pinaceae resin, was used as an adhesive material. Considering the situation where an organic material remained at the joint of the wood, the organic material attached to the wood is judged to be an adhesive material made of Pinaceae resin. In addition, the fatty acid component detected together is a component derived from plant oil, and it is presumed to be made by mixing rosin and oil as recorded in previous studies. This study confirms that organic residues remain in the burial environment without losing their characteristics. It is expected that scientific analysis of organic residues will be conducted in the future to accumulate information necessary for the interpretation of past living culture.

Effect of Tourmaline-added Eyeglass Frames on Normalization of Intraocular Pressure (토르말린이 첨가된 안경테가 안압 정상화에 미치는 영향)

  • Park, Sang-Chul;Jeong, Hye-Ri;Kwon, Jong-Moon;Lee, Gyu-Bin
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.461-468
    • /
    • 2018
  • Purpose : Tourmaline, a natural ore material, was applied to the entire eyeglasses to observe changes in intraocular pressure (IOP), one of the factors related to human ocular metabolism. Methods : After making eyeglass frames by mixing TR-90, which is the main material of eyeglass frames and 7wt% of tourmaline, The changes of intraocular pressure before and after wearing of tourmaline spectacle frames were divided into low, middle and high groups according to the intraocular pressure in 90 normal subjects (46 men and 44 women) in their 20s. Results : Total intraocular pressure was a significantly decreased to -4.14% (p<0.000) in the right eye after wearing tourmaline frames, and significantly decreased to -6.39 % (p<0.000) and -4.64 % (p<0.017) in the High and Middle groups, respectively. Total intraocular pressure was a significantly decreased to -2.74 % (p<0.004) in the left eye, and -4.58 % (p<0.000) in the High group only showed statically significant value. Conclusion : In this study, the spectacle frame containing 7wt% tourmaline was used and it was confirmed that the intraocular pressure was significantly decreased after wearing the spectacle frame, and it became close to the average value of the normal intraocular pressure range. The results of this study showed that tourmaline, which has the effect of promoting the metabolism and blood circulation of the body, has an effect on the normalization of the intraocular pressure by attaching it to the spectacle frame.

Comparison of Sea Surface Temperature from Oceanic Buoys and Satellite Microwave Measurements in the Western Coastal Region of Korean Peninsula (한반도 서해 연안 해역에서의 해양 부이 관측 수온과 위성 마이크로파 관측 해수면온도의 비교)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.555-567
    • /
    • 2018
  • In order to identify the characteristics of sea surface temperature (SST) differences between microwave SST from GCOM-W1/AMSR2 and in-situ measurements in the western coast of Korea, a total of 6,457 collocated matchup data were produced using the in-situ temperature measurements from marine buoy stations (Deokjeokdo, Chilbaldo, and Oeyeondo) from July 2012 to December 2017. The accuracy of satellite microwave SSTs was presented by comparing the ocean buoy data of Deokjeokdo, Chilbaldo, and Oeyeondo stations with the AMSR2 SST data more than five years. The SST differences between the microwave SST and the in-situ temperature measurements showed some dependence on environmental factors, such as wind speed and water temperature. The AMSR2 SSTs were tended to be higher than the in-situ temperature measurements during the daytime when the wind speed was low ($<6ms^{-1}$). On the other hand, they showed positive deviation increasingly as the wind speed increased for nighttime. In addition, increasing tendency of SST differences was related to decreasing sensitivity of microwave sensors at low temperatures and data contamination by land. A monthly analysis of the SST difference showed that unlike the previous trend, which was known to be the largest in winter when strong winds were blowing, the SST difference was largest in summer in Deokjeokdo and Chilbaldo buoy stations. This seemed to be induced by differential tidal mixing at the collocated matchup points. This study presented problems and limitations of the use of microwave SSTs with high contribution to the SST composites in the western coastal region off the Korean peninsula.

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.